Skip to main content
Log in

A New Stenotrophomonas maltophilia Strain Producing Laccase. Use in Decolorization of Synthetics Dyes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Laccase activity was detected in a soil bacterium Stenotrophomonas maltophilia AAP56 identified by biochemical and molecular methods. It was produced in cells at the stationary growth phase in Luria Bertani (LB) medium added by 0.4 mM copper sulfate. The addition of CuSO4 in culture medium improved production of laccase activity. However, one laccase enzyme was detected by native polyacrylamide gel electrophoresis. The enzyme showed syringaldazine (K m = 53 μM), 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (K m = 700 μM), and pyrocatechol (K m = 25 μM) oxidase activity and was activated by addition of 0.1% (v/v) Triton-X-100 in the reaction mixture. Moreover, the laccase activity was increased 2.6-fold by the addition of 10 mM copper sulfate; the enzyme was totally inhibited by ethylenediaminetetraacetic acid (5 mM), suggesting that this laccase is a metal-dependant one. Decolorization activity of some synthetic dyes (methylene blue, methyl green, toluidine blue, Congo red, methyl orange, and pink) and the industrial effluent (SITEX Black) was achieved by the bacteria S. maltophilia AAP56 in the LB growth medium under shaking conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Karam, J., & Nicell, J. A. (1997). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 69, 141–153. doi:10.1002/(SICI)1097-4660(199706)69:2<141::AID-JCTB694>3.0.CO;2-U.

    Article  CAS  Google Scholar 

  2. Palmieri, G., Giardina, P., & Sannia, G. (2005). Biotechnology Progress, 21, 1436–1441. doi:10.1021/bp050140i.

    Article  CAS  Google Scholar 

  3. Libra, J. A., Borchert, M., & Banit, S. (2003). Biotechnology and Bioengineering, 82, 736–744. doi:10.1002/bit.10623.

    Article  CAS  Google Scholar 

  4. Blanquez, P., Casas, N., Font, X., Gabarrell, X., Sarra, M., Caminal, G., et al. (2004). Water Research, 38, 2166–2172. doi:10.1016/j.watres.2004.01.019.

    Article  CAS  Google Scholar 

  5. Asgher, M., Bhatti, H., Ashraf, M., & Legge, R. (2008). Biodegradation, (March 30). doi:10.1007/s10532-008-9185-3.

  6. Asgher, M., Kausar, S., Bhatti, H. N., Hassan Shah, S. A., & Ali, M. (2008). International Biodeterioration & Biodegradation, 61, 189–193. doi:10.1016/j.ibiod.2007.07.009.

    Article  CAS  Google Scholar 

  7. Maximo, C., Pessoa, T., Amorim, M., & Costa-Ferreira, M. (2003). Enzyme and Microbial Technology, 32, 145–151. doi:10.1016/S0141-0229(02)00281-8.

    Article  CAS  Google Scholar 

  8. Torres, E., Bustos-Jaimes, I., & Le Borgne, S. (2003). Applied Catalysis B Environmental, 46, 1–15. doi:10.1016/S0926-3373(03)00228-5.

    Article  CAS  Google Scholar 

  9. Messerschmidt, A., & Huber, R. (1990). European Journal of Biochemistry, 187(2), 341–352. doi:10.1111/j.1432-1033.1990.tb15311.x.

    Article  CAS  Google Scholar 

  10. Mayer, A. M., & Staples, R. C. (2002). Phytochemistry, 60, 551–565. doi:10.1016/S0031-9422(02)00171-1.

    Article  CAS  Google Scholar 

  11. Thurston, C. F. (1994). Microbiology, 140, 19–26.

    Article  CAS  Google Scholar 

  12. Solomon, E. I., Sundaram, U. M., & Machonkin, T. E. (1996). Chemical Reviews, 96, 2563–2605. doi:10.1021/cr950046o.

    Article  CAS  Google Scholar 

  13. Harvey, B. M., & Walker, J. R. K. (1999). Journal of Biochemistry, Molecular Biology and Biophysics, 3, 45–51.

    CAS  Google Scholar 

  14. Kalme, S. D., Parshetti, G. K., Jadhav, S. U., & Govindwar, S. P. (2006). Bioresource Technology, 98(7), 1405–1410. doi:10.1016/j.biortech.2006.05.023.

    Article  CAS  Google Scholar 

  15. Held, C., Kandelbauer, A., Schroeder, M., Cavaco-Paulo, A., & Guebitz, G. M. (2005). Environmental Chemistry Letters, 3, 74–77. doi:10.1007/s10311-005-0006-1.

    Article  CAS  Google Scholar 

  16. Mohana, S., Desai, C., & Madamwar, D. (2006). Bioresource Technology, 98(2), 333–339. doi:10.1016/j.biortech.2005.12.024.

    Article  CAS  Google Scholar 

  17. Eden, P. A., Schmidt, T. M., Blakemore, R. P., & Pace, N. R. (1991). International Journal of Systematic Bacteriology, 41, 324–325.

    Article  CAS  Google Scholar 

  18. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). Journal of Bacteriology, 173, 697–703.

    CAS  Google Scholar 

  19. Laemmli, U. K. (1970). Nature, 227, 680–685. doi:10.1038/227680a0.

    Article  CAS  Google Scholar 

  20. Ferroni, A., Sermet-Gaudelus, I., Abachin, E., Quesnes, G., Lenoir, G., Berche, P., et al. (2003). Pathologie Biologie, 51, 405–411. doi:10.1016/S0369-8114(03)00021-X.

    Article  CAS  Google Scholar 

  21. Monteil, H., & Harf-Monteil, C. (2002). In Pseudomonas et apparentés, Dossier scientifique, Bactériologie: Taxonomie et autres actualités. Revue Française des laboratoires Vol. 2002 (343) (pp. 31–40).

  22. Hullo, M. F., Moszer, I., Danchin, A., & Martin-Verstraete, I. (2001). Journal of Bacteriology, 183(18), 5426–5430. doi:10.1128/JB.183.18.5426-5430.2001.

    Article  CAS  Google Scholar 

  23. Rosconi, F., Franco Fraguas, L., Martinez-Drets, G., & Castro-Sowinski, S. (2005). Enzyme and Microbial Technology, 36(5), 800–807. doi:10.1016/j.enzmictec.2005.01.003.

    Article  CAS  Google Scholar 

  24. Martins, L. O., Soares, C. M., Pereira, M. M., Teixeira, M., Costa, T., Jones, G. H., et al. (2002). The Journal of Biological Chemistry, 277, 18849–18859. doi:10.1074/jbc.M200827200.

    Article  CAS  Google Scholar 

  25. Bosshard, P. P., Zbinden, R., Abels, S., Böddinghaus, B., Altwegg, M., & Böttger, E. C. (2006). Journal of Clinical Microbiology, 44(4), 1359–1366. doi:10.1128/JCM.44.4.1359-1366.2006.

    Article  CAS  Google Scholar 

  26. Collins, P. J., & Dobson, A. D. W. (1997). Applied and Environmental Microbiology, 63(9), 3444–3450.

    CAS  Google Scholar 

  27. Kilaru, S., Hoegger, P. J., & Kües, U. (2006). Current Genetics, 50, 45–60. doi:10.1007/s00294-006-0074-1.

    Article  CAS  Google Scholar 

  28. Crowe, J. D., & Olsson, S. (2001). Applied and Environmental Microbiology, 5(67), 2088–2094. doi:10.1128/AEM.67.5.2088-2094.2001.

    Article  Google Scholar 

  29. Grass, G., Thakali, K., Klebba, P. E., Thieme, D., Müller, A., Wildner, G. F., & Rensing, C. (2004). Journal of Bacteriology, 186(17), 5826–5833. doi:10.1128/JB.186.17.5826-5833.2004.

    Article  CAS  Google Scholar 

  30. Castro-Sowinski, S., Martinez-Drets, G., & Okon, Y. (2002). FEMS Microbiology Letters, 209, 119–125. doi:10.1111/j.1574-6968.2002.tb11119.x.

    Article  CAS  Google Scholar 

  31. Claus, H. (2004). Micron (Oxford, England), 35, 93–96. doi:10.1016/j.micron.2003.10.029.

    CAS  Google Scholar 

  32. Diamantidis, G., Effosse, A., Potier, P., & Bally, R. (2000). Soil Biology & Biochemistry, 32, 919–927. doi:10.1016/S0038-0717(99)00221-7.

    Article  CAS  Google Scholar 

  33. Chefetz, B., Chen, Y., & Hadar, Y. (1998). Applied and Environmental Microbiology, 9(64), 3175–3179.

    Google Scholar 

  34. D’Annibale, A., Celletti, D., Felici, M., Di Mattia, E., & Giovannozzi-Sermanni, G. (1996). Acta Biotechnologica, 16, 257–270. doi:10.1002/abio.370160408.

    Article  Google Scholar 

  35. Das, N., Chakraborty, T. K., & Mukherjee, M. (2001). Journal of Basic Microbiology, 41, 261–267. doi:10.1002/1521-4028(200110)41:5<261::AID-JOBM261>3.0.CO;2-V.

    Article  CAS  Google Scholar 

  36. Wahleithner, J. A., Xu, F., Brown, K. M., Brown, S. H., Golightly, E. J., Halkier, T., et al. (1996). Current Genetics, 29, 395–403. doi:10.1007/BF02208621.

    Article  CAS  Google Scholar 

  37. Kiiskinen, L. L., Viikari, L., & Kruus, K. (2002). Applied Microbiology and Biotechnology, 59, 198–204. doi:10.1007/s00253-002-1012-x.

    Article  CAS  Google Scholar 

  38. Wood, D. A. (1980). Journal of General Microbiology, 117, 327–338.

    CAS  Google Scholar 

  39. Gigi, O., Marbach, I., & Mayer, A. M. (1981). Phytochemistry, 20, 1211–1213. doi:10.1016/0031-9422(81)80006-4.

    Article  CAS  Google Scholar 

  40. Zouari-Mechichi, H., Mechichi, T., Dhouib, A., Sayadi, S., Marinez, A. T., & Martinez, M. J. (2006). Enzyme and Microbial Technology, 39, 141–148. doi:10.1016/j.enzmictec.2005.11.027.

    Article  CAS  Google Scholar 

  41. Lopez, M. J., Guisado, G., Vargas-Garcia, M. C., Suarez-Estrella, F., & Moreno, J. (2006). Enzyme and Microbial Technology, 40, 42–45. doi:10.1016/j.enzmictec.2005.10.035.

    Article  CAS  Google Scholar 

  42. Eichlerova, I., Homolka, L., & Nerud, F. (2007). Dyes and Pigments, 75, 38–44. doi:10.1016/j.dyepig.2006.05.008.

    Article  CAS  Google Scholar 

  43. Murugesan, K., Nam, I. H., Kim, Y. M., & Chang, Y. S. (2007). Enzyme and Microbial Technology, 40, 1662–1672. doi:10.1016/j.enzmictec.2006.08.028.

    Article  CAS  Google Scholar 

  44. Givaudan, A., Effosse, A., Faure, D., Potier, P., Bouillant, M. L., & Bally, R. (1993). FEMS Microbiology Letters, 108, 205–210. doi:10.1111/j.1574-6968.1993.tb06100.x.

    Article  CAS  Google Scholar 

  45. Faure, D., Bouillant, M. L., & Bally, R. (1995). Applied and Environmental Microbiology, 61(3), 1144–1146.

    CAS  Google Scholar 

  46. Sanchez-Amat, A., Lucas-Elio, P., Fernandez, E., Garcia-Borron, J. C., & Solano, F. (2001). Biochimica et Biophysica Acta, 1547, 104–116.

    CAS  Google Scholar 

  47. Claus, H., & Filip, Z. (1997). Microbiological Research, 152, 209–216.

    CAS  Google Scholar 

  48. Chris, A. F., & Bradley, M. T. (2001). Applied and Environmental Microbiology, 67(9), 4272–4278. doi:10.1128/AEM.67.9.4272-4278.2001.

    Article  Google Scholar 

  49. Grass, G., & Rensing, C. (2001). Biochemical and Biophysical Research Communications, 286, 902–908. doi:10.1006/bbrc.2001.5474.

    Article  CAS  Google Scholar 

  50. Sitthisak, S., Howieson, K., Amezola, C., & Jayaswal, R. K. (2005). Applied and Environmental Microbiology, 71(9), 5650–5653. doi:10.1128/AEM.71.9.5650-5653.2005.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank Dr Ali Amor (Laboratoire d’analyses biomédicales, Hopital Militaire) for Api identification and Pr. Ali Gargouri from CBS Sfax for DNA sequencing. This work was supported by the Tunisian Ministry of Higher Education, Scientific Research, and Technology (Financial project of Bioengineering Unit 99 UR/09-26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nejib Marzouki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galai, S., Limam, F. & Marzouki, M.N. A New Stenotrophomonas maltophilia Strain Producing Laccase. Use in Decolorization of Synthetics Dyes. Appl Biochem Biotechnol 158, 416–431 (2009). https://doi.org/10.1007/s12010-008-8369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8369-y

Keywords

Navigation