Skip to main content
Log in

Pilot-Scale Fermentation of Aqueous-Ammonia-Soaked Switchgrass

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Aqueous-ammonia-steeped switchgrass was subject to simultaneous saccharification and fermentation (SSF) in two pilot-scale bioreactors (50- and 350-L working volume). Switchgrass was pretreated by soaking in ammonium hydroxide (30%) with solid to liquid ratio of 5 L ammonium hydroxide per kilogram dry switchgrass for 5 days in 75-L steeping vessels without agitation at ambient temperatures (15 to 33 °C). SSF of the pretreated biomass was carried out using Saccharomyces cerevisiae (D5A) at approximately 2% glucan and 77 filter paper units per gram cellulose enzyme loading (Spezyme CP). The 50-L fermentation was carried out aseptically, whereas the 350-L fermentation was semiaseptic. The percentage of maximum theoretical ethanol yields achieved was 73% in the 50-L reactor and 52–74% in the 350-L reactor due to the difference in asepsis. The 350-L fermentation was contaminated by acid-producing bacteria (lactic and acetic acid concentrations approaching 10 g/L), and this resulted in lower ethanol production. Despite this problem, the pilot-scale SSF of aqueous-ammonia-pretreated switchgrass has shown promising results similar to laboratory-scale experiments. This work demonstrates challenges in pilot-scale fermentations with material handling, aseptic conditions, and bacterial contamination for cellulosic fermentations to biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anex, R. P., Lynd, L. R., Laser, M. S., Heggenstaller, A. H., & Liebman, M. (2007). Crop Science, 47, 1327–1335.

    Article  Google Scholar 

  2. Do, Y. S., Smeenk, J., Broer, K. M., Kisting, C. J., Brown, R., Heindel, T. J., et al. (2007). Biotechnology and Bioengineering, 97(2), 279–286.

    Article  CAS  Google Scholar 

  3. De Bari, I., Viola, E., Barisano, D., Caredinale, M., Nanna, F., Zimbardi, F., et al. (2002). Industrial and Engineering Chemistry Research, 41, 1745–1753.

    Article  CAS  Google Scholar 

  4. Schell, D. J., Riley, C. J., Dowe, N., Farmer, J., Ibsen, K. N., Ruth, M. F., et al. (2004). Bioresource Technology, 91, 179–188.

    Article  CAS  Google Scholar 

  5. Schell, D. J., Dowe, N., Ibsen, K. N., Riley, C. J., Ruth, M. F., & Lumpkin, R. E. (2007). Bioresource Technology, 98, 2942–2948.

    Article  CAS  Google Scholar 

  6. Isci, A., Himmelsbach, J. N., Pometto, A. L., Raman, D. R., & Anex, R. P. (2008). Applied Biochemistry and Biotechnology, 144(1), 69–77.

    Article  CAS  Google Scholar 

  7. Alizadeh, H., Teymouri, F., Gilbert, T. I., & Dale, B. E. (2005). Applied Biochemistry and Biotechnology, 121, 1133–1141.

    Article  Google Scholar 

  8. Chang, V. S., Kaar, W. E., Burr, B., & Holtzapple, M. T. (2001). Biotechnology Letters, 23, 1327–1333.

    Article  CAS  Google Scholar 

  9. Kurakake, M., Kisaka, W., Ouchi, K., & Komaki, T. (2001). Applied Biochemistry and Biotechnology, 90, 251–259.

    Article  CAS  Google Scholar 

  10. Iyer, P. V., Wu, Z. W., Kim, S. B., & Lee, Y. Y. (1996). Applied Biochemistry and Biotechnology, 57–58, 121–132.

    Article  Google Scholar 

  11. Vogel, K. P., Pedersen, J. F., Masterson, S. D., & Toy, J. J. (1999). Crop Science, 39, 276–279.

    Google Scholar 

  12. National Renewable Energy Laboratory (1996). NREL standard procedures no. 006. Golden: National Renewable Energy Laboratory.

    Google Scholar 

  13. Kim, T. H., & Lee, Y. Y. (2005). Applied Biochemistry and Biotechnology, 121/124, 1119–1132.

    Article  Google Scholar 

  14. Himmelsbach, J. N., Isci, A., Raman, D. R., & Anex, R. P. (2007). Journal of Biological Engineering, under review.

  15. National Renewable Energy Laboratory (1996). NREL standard procedures no. 008. Golden: National Renewable Energy Laboratory.

    Google Scholar 

  16. Demirci, A., & Pometto III, A. L. (1999). Journal of Agricultural Food and Chemistry, 47, 2491–2495.

    Article  CAS  Google Scholar 

  17. Maiorella, B., Blanch, H. W., & Wilke, C. R. (1983). Biotechnology and Bioengineering, 25, 103–121.

    Article  CAS  Google Scholar 

  18. Connolly, C. (1997). Bacterial contaminants and their effects on alcohol production. In K. A. Jacques, T. P. Lyons, & D. R. Kelsall (Eds.),The alcohol textbook, 3rd edn (pp. 317–334). Nottingham: Nottingham University Press.

    Google Scholar 

  19. Lushia, W., & Heist, P. (2005) Antibiotic resistant bacteria in fuel ethanol fermentations. Ethanol Producer Magazine, 80–82.

Download references

Acknowledgements

This research was funded in part by the Center for Global and Regional Environmental Research at the University of Iowa. This material is also based, in part, upon work supported by the National Science Foundation under Grant No. 0424700. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

The authors would like to thank Dr. Larry Johnson, Mark Reuber, Dr. Jay Harmon, Dr. Burns, Dr. Glanville, Chelsea Lamar, Ross Muhlbauer, Tim Shepherd, and the members of the Raman-Anex Lab Group for their help and support and Genencor for generously providing Spezyme CP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asli Isci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isci, A., Himmelsbach, J.N., Strohl, J. et al. Pilot-Scale Fermentation of Aqueous-Ammonia-Soaked Switchgrass. Appl Biochem Biotechnol 157, 453–462 (2009). https://doi.org/10.1007/s12010-008-8235-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8235-y

Keywords

Navigation