Skip to main content
Log in

High Solid Loading in Dilute Acid Hydrolysis of Orange Peel Waste Improves Ethanol Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Orange peel waste was converted into ethanol by consecutive acid-catalyzed steam-explosion (ACSE), enzymatic saccharification, and fermentation with Saccharomyces cerevisiae F15. With the aim of increasing the concentration of fermentable sugars in the hydrolysate and to fully recycle the spent acid liquor as the suspending medium for saccharification, the technical feasibility of increasing the solid loading in the ACSE step from 160 to 480 g L−1 was assessed. At high solid loading in the ACSE pretreatment (HSLAP), the solubilization degrees of polysaccharides were lower while those of potential inhibitors (e.g., acetic and formic acids and phenols) were generally higher than those found at low solid loading (LSLAP). However, residual solids from both solid loadings showed similar susceptibility to enzymatic saccharification (ES) in a 7-L stirred-tank reactor (STR) (cellulase, 12 FPU g−1 cellulose; pectinase, 25 IU g−1 dry matter; 72 h incubation at 50 °C). Fermentation was performed in a 1-L STR along five repeated batches with the first one being used to enable yeast proliferation. By using the hydrolysates arising from the HSLAP-ES combination, it was possible to rely on a fermentation medium with a 2.5-fold higher concentration of simple sugars and to double the ethanol concentration in the final beer to be distilled of. However, the higher content of inhibitory compounds in hydrolysates from HSLAP-ES than in the LSLAP-ES ones led to a reduction in the ethanol yield per unit substrate consumed (0.49 vs. 0.41 g g−1, respectively) and overall productivity (3.4 vs. 2.7 g h−1, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Marin FR, Soler-Rivas C, Benavente-Garcia O, Castillo J, Perez-Alvarez JA (2007) By-products from different citrus processes as a source of customized functional fibres. Food Chem 100(2):736–741. doi:10.1016/j.foodchem.2005.04.040

    Article  CAS  Google Scholar 

  2. Crawshaw R (2004) Co-product feeds: animal feeds from the food and drinks industries. Nottingham University Press, Nottingham

    Google Scholar 

  3. Grohmann K, Baldwin EA (1992) Hydrolysis of orange peel with pectinase and cellulase enzymes. Biotechnol Lett 14(12):1169–1174. doi:10.1007/BF01027023

    Article  CAS  Google Scholar 

  4. Grohmann K, Baldwin EA, Buslig BA (1994) Production of ethanol from enzymatically hydrolyzed orange peel by the yeast Saccharomyces cerevisiae. Appl Biochem Biotechnol 45–46(2):315–327. doi:10.1007/BF02941808

    Article  PubMed  Google Scholar 

  5. Grohmann K, Cameron RG, Buslig BS (1995) Fractionation and pretreatment of orange peel by dilute acid hydrolysis. Bioresour Technol 54(2):129–141. doi:10.1016/0960-8524(95)00121-2

    Article  CAS  Google Scholar 

  6. Pourbafrani M, Forgács G, Horváth IS, Niklasson C, Taherzadeh MJ (2010) Production of biofuels, limonene and pectin from citrus wastes. Bioresour Technol 101(11):4246–4250. doi:10.1016/j.biortech.2010.01.077

    Article  CAS  PubMed  Google Scholar 

  7. Widmer W, Zhou W, Grohmann K (2010) Pretreatment effects on orange processing waste for making ethanol by simultaneous saccharification and fermentation. Bioresour Technol 101(14):5242–5249. doi:10.1016/j.biortech.2009.12.038

    Article  CAS  PubMed  Google Scholar 

  8. Wilkins MR, Widmer WW, Grohmann K (2007) Simultaneous saccharification and fermentation of citrus peel waste by Saccharomyces cerevisiae to produce ethanol. Process Biochem 42(2):1614–1619. doi:10.1016/j.procbio.2007.09.006

    Article  CAS  Google Scholar 

  9. Zhou W, Widmer W, Grohmann K (2008) Developments in ethanol production from citrus peel waste. Proc Fla State Hortic Soc 121:307–310

    Google Scholar 

  10. Wilkins MR, Suryawati L, Maness NO, Chrz D (2007) Ethanol production by Saccharomyces cerevisiae and Kluyveromyces marxianus in the presence of orange-peel oil. World J Microbiol Biotechnol 23:1161–1168

    Article  CAS  Google Scholar 

  11. Sandhu KS, Minhas K (2006) Oranges and citrus juices. In: Hui YH (ed) Handbook of fruits and fruit processing. Blackwell, Oxford, pp 309–358

    Chapter  Google Scholar 

  12. Santi G, Crognale S, D’Annibale A, Petruccioli M, Ruzzi M, Valentini R, Moresi M (2014) Orange peel pretreatment in a novel lab-scale direct steam-injection apparatus for ethanol production. Biomass Bioenergy 61:146–156. doi:10.1016/j.biombioe.2013.12.007

    Article  CAS  Google Scholar 

  13. Boluda-Aguilar M, García-Vidal L, del Pilar G-CF, López-Gómez A (2010) Mandarin peel wastes pretreatment with steam explosion for bioethanol production. Bioresour Technol 101(10):3506–3513. doi:10.1016/j.biortech.2009.12.063

    Article  CAS  PubMed  Google Scholar 

  14. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268. doi:10.1351/pac198759020257

    Article  CAS  Google Scholar 

  15. Collmer A, Ried JL, Mount MS (1988) Assay methods for pectic enzymes. In: Colowick SP, Kaplan N (eds) Methods in enzymology: biomass. Part B, vol. 161. Academic, San Diego, pp 329–335

    Google Scholar 

  16. Van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. J Assoc Off Anal Chem 46:829–835

    Google Scholar 

  17. Larsson S, Reimann A, Nilvebrant N, Jönsson LJ (1999) Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol 77–79(1–3):91–103. doi:10.1385/ABAB:77:1-3:91

    Article  Google Scholar 

  18. Swain T, Hillis WE (1959) The phenolic constituents of Prunus domestica. J Sci Food Agric 10(1):63–68. doi:10.1002/jsfa.2740100110

    Article  CAS  Google Scholar 

  19. Taylor KA, Buchanan-Smith JG (1992) A colorimetric method for the quantitation of uronic acids and a specific assay for galacturonic acid. Anal Biochem 201(1):190–196. doi:10.1016/0003-2697(92)90194-C

    Article  CAS  PubMed  Google Scholar 

  20. Talebnia F, Pourbafrani M, Lundin M, Taherzadeh MJ (2008) Optimization study of citrus wastes saccharification by dilute-acid hydrolysis. Bioresources 3(1):108–122

    CAS  Google Scholar 

  21. Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M (2010) Inhibition of cellulases by phenols. Enzym Microb Technol 46:170–176. doi:10.1016/j.enzmictec.2009.11.001

    Article  CAS  Google Scholar 

  22. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33. doi:10.1016/S0960-8524(99)00161-3

    Article  CAS  Google Scholar 

  23. Oberoi HS, Vadlani PV, Madl RL, Saida L, Abeykoon JP (2010) Ethanol production from orange peels: two-stage hydrolysis and fermentation studies using optimized parameters through experimental design. J Agric Food Chem 58(6):3422–3429. doi:10.1021/jf903163t

    Article  CAS  PubMed  Google Scholar 

  24. Asghari FS, Yoshida H (2007) Kinetics of the decomposition of fructose catalyzed by hydrochloric acid in subcritical water: formation of 5-hydroxymethylfurfural, levulinic, and formic acids. Ind Eng Chem Res 46(23):7703–7710. doi:10.1021/ie061673e

    Article  CAS  Google Scholar 

  25. Tsukamoto J, Durán N, Tasic L (2013) Nanocellulose and bioethanol production from orange waste using isolated microorganisms. J Braz Chem Soc 24(9):1537–1543. doi:10.5935/0103-5053.20130195

    CAS  Google Scholar 

  26. Hodge DB, Karim MN, Schell DJ, McMillan JD (2008) Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresour Technol 99:8940–8948. doi:10.1016/j.biortech.2008.05.015

    Article  CAS  PubMed  Google Scholar 

  27. Kristensen JB, Felby C, Jørgensen H (2009) Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 2:11. doi:10.1186/1754-6834-2-11

    Article  PubMed Central  PubMed  Google Scholar 

  28. Timson DJ (2007) Galactose metabolism in Saccharomyces cerevisiae. Dyn Biochem Process Biotechnol Mol Biol 1(1):63–73

    Google Scholar 

  29. Leeper SA, Tsao GT (1987) Membrane separations in ethanol recovery: an analysis of two applications of hyperfiltration. J Membr Sci 30(3):289–312. doi:10.1016/S0376-7388(00)80124-

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by a grant from the Italian Ministry of the Environment and Territories within the Italy-Israel Partnership in the Environmental Research and Development sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro D’Annibale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santi, G., Jasiulewicz, J., Crognale, S. et al. High Solid Loading in Dilute Acid Hydrolysis of Orange Peel Waste Improves Ethanol Production. Bioenerg. Res. 8, 1292–1302 (2015). https://doi.org/10.1007/s12155-015-9591-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9591-4

Keywords

Navigation