Skip to main content

Advertisement

Log in

Response Surface Optimization of the Critical Medium Components for Pullulan Production by Aureobasidium pullulans FB-1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Culture conditions for pullulan production by Aureobasidium pullulans were optimized using response surface methodology at shake flask level without pH control. In the present investigation, a five-level with five-factor central composite rotatable design of experiments was employed to optimize the levels of five factors significantly affecting the pullulan production, biomass production, and sugar utilization in submerged cultivation. The selected factors included concentration of sucrose, ammonium sulphate, yeast extract, dipotassium hydrogen phosphate, and sodium chloride. Using this methodology, the optimal values for concentration of sucrose, ammonium sulphate, yeast extract, dipotassium hydrogen phosphate, and sodium chloride were 5.31%, 0.11%, 0.07%, 0.05%, and 0.15% (w/v), respectively. This optimized medium has projected a theoretically production of pullulan of 4.44%, biomass yield of 1.03%, and sugar utilization of 97.12%. The multiple correlation coefficient ‘R’ was 0.9976, 0.9761 and 0.9919 for pullulan production, biomass production, and sugar utilization, respectively. The value of R being very close to one justifies an excellent correlation between the predicted and the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Leathers, T. D. (2003). Applied Microbiology and Biotechnology, 62, 468–473.

    Article  CAS  Google Scholar 

  2. Chi, Z., & Zhao, S. (2003). Enzyme and Microbial Technology, 33, 206–211.

    Article  CAS  Google Scholar 

  3. Forabosco, A., Bruno, G., Sparapano, L., Liut, G., Marino, D., & Delbren, F. (2006). Carbohydrate Polymers, 63, 535–544.

    Article  CAS  Google Scholar 

  4. Lee, J.-H., Kim, J.-H., Zhu, I.-H., Zhan, X.-B., Lee, J.-W., Shin, D.-H., et al. (2001). Biotechnology Letters, 23, 817–820.

    Article  CAS  Google Scholar 

  5. Shingel, K. I. (2004). Carbohydrate Research, 339, 447–460.

    Article  CAS  Google Scholar 

  6. Cochran, W. G., & Cox, G. M. (1992). In experimental designs. New York, USA: Wiley.

    Google Scholar 

  7. Balusu, R., Paduru, R. R., Kuravi, S. K., Seenayya, G., & Reddy, G. (2005). Process Biochemistry, 40, 3025–3030.

    Article  CAS  Google Scholar 

  8. Raoa, Y. K., Lub, S.-C., Liub, B.-L., & Tzeng, Y.-M. (2006). Biochemical Engineering Journal, 28, 57–66.

    Article  Google Scholar 

  9. Box, G. E. P., Hunter, W. G., & Hunter, J. G. (1978). In statistics of experimenters. New York, USA: Wiley.

    Google Scholar 

  10. Montgomery, D. C. (2001). In design and analysis of experiments. New York, USA: Wiley.

    Google Scholar 

  11. Kalil, S. J., Maugeri, F., & Rodrigues, M. I. (2000). Process Biochemistry, 35, 539–550.

    Article  CAS  Google Scholar 

  12. Cazetta, M. L., Celligoi, M. A. P. C., Buzato, J. B., Scarmino, I. S., & Silva, R. S. F. (2005). Process Biochemistry, 40, 747–751.

    Article  CAS  Google Scholar 

  13. Faveri, D. D., Torre, P., Perego, P., & Converti, A. (2004). Journal of Food Engineering, 65, 383–389.

    Article  Google Scholar 

  14. Kotzamanidis, C., Roukas, T., & Skaracis, G. (2002). World Journal of Microbiology & Biotechnology, 18, 441–448.

    Article  CAS  Google Scholar 

  15. Nawani, N. N., & Kapadnis, B. P. (2005). Process Biochemistry, 40, 651–660.

    Article  CAS  Google Scholar 

  16. Göksungur, Y. (2004). Journal of Chemical Technology and Biotechnology, 79, 974–981.

    Article  Google Scholar 

  17. Li, C., Bai, J., Cai, Z., & Ouyang, F. (2002). Journal of Biotechnology, 93, 27–34.

    Article  CAS  Google Scholar 

  18. Sreekumar, O., Chand, N., & Basappa, S. C. (1999). Journal of Bioscience and Bioengineering, 88, 334–338.

    Article  CAS  Google Scholar 

  19. Lin, Y., Zhang, Z., & Thibault, J. (2007). Process Biochemistry, 42, 820–827.

    Article  CAS  Google Scholar 

  20. Göksungur, Y., Dağbağli, S., Uçan, A., & Güvenç, U. (2005). Journal of Chemical Technology and Biotechnology, 80, 819–827.

    Article  Google Scholar 

  21. Singh, R. S., & Saini, G. K. (2008). Bioresource Technology, 99, 3896–3899.

    Article  CAS  Google Scholar 

  22. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  23. Rao, K. J., Kim, C. H., & Rhee, S. K. (2000). Process Biochemistry, 35, 639–647.

    Article  CAS  Google Scholar 

  24. Shin, C. Y., Kim, Y. H., Lee, H. S., Kim, Y. N., & Byun, S. M. (1987). Biotechnology Letters, 9, 621–624.

    Article  CAS  Google Scholar 

  25. Lazaridou, A., Biliaderis, C. G., Roukas, T., & Izydorczyk, M. (2002). Applied Biochemistry and Biotechnology, 97, 1–22.

    Article  CAS  Google Scholar 

  26. Shin, Y. C., Kim, Y. H., Lee, H. S., Cho, S. J., & Byun, S. M. (1989). Biotechnology and Bioengineering, 33, 129–133.

    Article  CAS  Google Scholar 

  27. Shabtai, Y., & Mukmeneev, I. (1995). Applied Microbiology and Biotechnology, 43, 595–603.

    Article  CAS  Google Scholar 

  28. Boa, J. M., & LeDuy, A. (1984). Applied and Environmental Microbiology, 48, 26–30.

    CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Department of Biotechnology, Punjabi University, Patiala for providing the necessary laboratory facilities for this work. The financial assistance received under the FIST program from Department of Science and Technology, Govt. of India, New Delhi is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Sarup Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R.S., Singh, H. & Saini, G.K. Response Surface Optimization of the Critical Medium Components for Pullulan Production by Aureobasidium pullulans FB-1. Appl Biochem Biotechnol 152, 42–53 (2009). https://doi.org/10.1007/s12010-008-8180-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8180-9

Keywords

Navigation