Skip to main content
Log in

Regulation of Autolysis in Aspergillus nidulans

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In terms of cell physiology, autolysis is the centerpiece of carbon-starving fungal cultures. In the filamentous fungus model organism Aspergillus nidulans, the last step of carbon-starvation-triggered autolysis was the degradation of the cell wall of empty hyphae, and this process was independent of concomitantly progressing cell death at the level of regulation. Autolysis-related proteinase and chitinase activities were induced via FluG signaling, which initiates sporulation and inhibits vegetative growth in surface cultures of A. nidulans. Extracellular hydrolase production was also subjected to carbon repression, which was only partly dependent on CreA, the main carbon catabolite repressor in this fungus. These data support the view that one of the main functions of autolysis is supplying nutrients for sporulation, when no other sources of nutrients are available. The divergent regulation of cell death and cell wall degradation provides the fungus with the option to keep dead hyphae intact to help surviving cells to absorb biomaterials from dead neighboring cells before these are released into the extracellular space. The industrial significance of these observations is also discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. White, S., McIntyre, M., Berry, D. R., & McNeil, B. (2002). Critical Reviews in Biotechnology, 22, 1–14.

    Article  Google Scholar 

  2. McIntyre, M., Berry, D. R., & McNeil, B. (1999). Enzyme and Microbial Technology, 25, 447–454.

    Article  CAS  Google Scholar 

  3. Mousavi, S. A., & Robson, G. D. (2003). Fungal Genetics and Biology, 39, 221–229.

    Article  CAS  Google Scholar 

  4. Pócsi, I., Pusztahelyi, T., Sámi, L., & Emri, T. (2003). Indian Journal of Biotechnology, 2, 293–301.

    Google Scholar 

  5. Pócsi, I., Molnár, Zs., Pusztahelyi, T., Varecza, Z., & Emri, T. (2007). Acta Biologica Hungarica, 58, 431–440.

    Article  Google Scholar 

  6. Emri, T., Molnár, Zs., Pusztahelyi, T., & Pócsi, I. (2004a). Folia Microbiologica, 49, 277–284.

    Article  CAS  Google Scholar 

  7. Tabera, L., Munoz, R., & Gonzalez, R. (2006). Applied and Environmental Microbiology, 72, 2351–2358.

    Article  CAS  Google Scholar 

  8. Jimenez-Tobon, G., Kurzatkowski, W., Rozbicka, B., Solecka, J., Pócsi, I., & Penninckx, M. J. (2003). Microbiology, 149, 3121–3127.

    Article  CAS  Google Scholar 

  9. Reichard, U., Hung, C. Y., Thomas, P. W., & Cole, G. T. (2000). Infection and Immunity, 68, 5830–5838.

    Article  CAS  Google Scholar 

  10. Pócsi, I., Sámi, L., Leiter, É., Majoros, L., Szabó, B., Emri, T., et al. (2001). Acta Microbiologica et Immunologica Hungarica, 48, 533–543.

    Article  Google Scholar 

  11. Thrane, C., Kaufmann, U., Stummann, B. M., & Olsson, S. (2004). Fungal Genetics and Biology, 41, 361–368.

    Article  CAS  Google Scholar 

  12. Terakawa, T., Takaya, N., Horiuchi, H., Koike, M., & Takagi, M. (1997). Plant Cell Reports, 16, 439–443.

    CAS  Google Scholar 

  13. McNeil, B., Berry, D. R., Harvey, L. M., Grant, A., & White, S. (1998). Biotechnology and Bioengineering, 57, 297–305.

    Article  CAS  Google Scholar 

  14. Liu, X. H., Lu, J. P., & Lin, F. C. (2007). Autophagy, 3, 472–473.

    CAS  Google Scholar 

  15. Richie, D. L., Fuller, K. K., Fortwendel, J., Miley, M. D., McCarthy, J. W., Feldmesser, M., et al. (2007). Eukaryotic Cell, 6, 2437–2447.

    Article  CAS  Google Scholar 

  16. Emri, T., Molnár, Zs., Pusztahelyi, T., Rosén, S., & Pócsi, I. (2004b). Applied Biochemistry and Biotechnology, 118, 337–348.

    Article  CAS  Google Scholar 

  17. Emri, T., Molnár, Zs., Pusztahelyi, T., Varecza, Z., & Pócsi, I. (2005a). Mycological Research, 109, 757–763.

    Article  CAS  Google Scholar 

  18. Emri, T., Molnár, Zs., & Pócsi, I. (2005b). FEMS Microbiology Letters, 251, 297–303.

    Article  CAS  Google Scholar 

  19. Emri, T., Molnár, Zs., Veres, T., Pusztahelyi, T., Dudás, G., & Pócsi, I. (2006). Mycological Research, 110, 1172–1178.

    Article  CAS  Google Scholar 

  20. Molnár, Zs., Mészáros, E., Szilágyi, Zs., Rosén, S., Emri, T., & Pócsi, I. (2004). Applied Biochemistry and Biotechnology, 118, 349–360.

    Article  Google Scholar 

  21. Molnár, Zs., Emri, T., Zavaczki, E., Pusztehelyi, T., & Pócsi, I. (2006). Journal of Basic Microbiology, 46, 495–603.

    Article  CAS  Google Scholar 

  22. Sándor, E., Pusztahelyi, T., Karaffa, L., Karányi, Zs., Pócsi, I., Biró, S., et al. (1998). FEMS Microbiology Letters, 164, 231–236.

    Article  Google Scholar 

  23. Pócsi, I., Emri, T., Varecza, Z., Sámi, L., & Pusztahelyi, T. (2000). Advances in Chitin Science, 4, 558–564.

    Google Scholar 

  24. Sámi, L., Pusztahelyi, T., Emri, T., Varecza, Z., Fekete, A., Grallert, Á., et al. (2001). Journal of General and Applied Microbiology, 47, 201–211.

    Article  Google Scholar 

  25. Paul, G. C., Kent, C. A., & Thomas, C. R. (1994). Biotechnology and Bioengineering, 44, 655–660.

    Article  CAS  Google Scholar 

  26. Jüsten, P., Paul, G. C., Nienow, A. W., & Thomas, C. R. (1998). Biotechnology and Bioengineering, 59, 762–775.

    Article  Google Scholar 

  27. Lee, B. N., & Adams, T. H. (1994a). Molecular Microbiology, 14, 323–334.

    Article  CAS  Google Scholar 

  28. Lee, B. N., & Adams, T. H. (1994b). Genes & Development, 8, 641–651.

    Article  CAS  Google Scholar 

  29. D’Sousa, C. A., Lee, B. N., & Adams, T. H. (2001). Genetics, 158, 1027–1036.

    Google Scholar 

  30. Adams, T. H., Wieser, J. K., & Yu, J. H. (1998). Microbiology and Molecular Biology Reviews, 62, 35–54.

    CAS  Google Scholar 

  31. Seo, J. A., Guan, Y., & Yu, J. H. (2006). Genetics, 172, 1535–1544.

    Article  CAS  Google Scholar 

  32. Shroff, R. A., O’Connor, S. M., Hynes, M. J., Lockington, R. A., & Kelly, J. M. (1997). Fungal Genetics and Biology, 22, 28–38.

    Article  CAS  Google Scholar 

  33. Nehlin, J. O., & Ronne, H. (1990). EMBO Journal, 9, 2891–2898.

    CAS  Google Scholar 

  34. Mathieu, M., & Felenbok, B. (1994). EMBO Journal, 13, 4022–4027.

    CAS  Google Scholar 

  35. Shroff, R. A., Lockington, R. A., & Kelly, J. M. (1996). Canadian Journal of Microbiology, 42, 950–959.

    Article  CAS  Google Scholar 

  36. Lockington, R. A., & Kelly, J. M. (2001). Molecular Microbiology, 40, 1311–1321.

    Article  CAS  Google Scholar 

  37. Skromne, I., Sánchez, O., & Aguirre, J. (1995). Microbiology, 141, 21–28.

    CAS  Google Scholar 

  38. Soid-Raggi, G., Sánchez, O., & Aguirre, J. (2006). Molecular Microbiology, 59, 854–869.

    Article  CAS  Google Scholar 

  39. Pusztahelyi, T., Pócsi, I., Kozma, J., & Szentirmai, A. (1997). Biotechnology and Applied Biochemistry, 25, 81–86.

    CAS  Google Scholar 

  40. Pusztahelyi, T., Molnár, Zs., Emri, T., Klement, É., Miskei, M., Kerékgyártó, J., et al. (2006). Folia Microbiologica, 51, 547–554.

    Article  CAS  Google Scholar 

  41. Yamazaki, H., Yamazaki, D., Takaya, N., Takagi, M., Ohta, A., & Horiuchi, H. (2007). Current Genetics, 51, 89–98.

    Article  CAS  Google Scholar 

  42. Andrianopoulos, A., & Timberlake, W. E. (1994). Molecular and Cellular Biology, 14, 2503–2515.

    CAS  Google Scholar 

  43. Adams, D. J. (2004). Microbiology, 150, 2029–2035.

    Article  CAS  Google Scholar 

  44. vanKuyk, P. A., Cheetham, B. F., & Katz, M. E. (2000). Fungal Genetics and Biology, 29, 201–210.

    Article  CAS  Google Scholar 

  45. Gronover, C. S., Kasulke, D., Tudzynski, P., & Tudzynski, B. (2001). Molecular Plant-Microbe Interactions, 14, 1293–1302.

    Article  CAS  Google Scholar 

  46. Hicks, J. K., Yu, J. H., Keller, N. P., & Adams, T. H. (1997). EMBO Journal, 16, 4916–4923.

    Article  CAS  Google Scholar 

  47. Han, K. H., Soe, J. A., & Yu, J. H. (2004). Molecular Microbiology, 53, 529–540.

    Article  CAS  Google Scholar 

  48. Yu, J. H. (2006). Journal of Microbiology, 44, 145–154.

    CAS  Google Scholar 

  49. Rosén, S., Yu, J. H., & Adams, T. H. (1999). EMBO Journal, 18, 5592–5600.

    Article  Google Scholar 

  50. Seo, J. A., Han, K. H., & Yu, J. H. (2005). Genetics, 171, 81–89.

    Article  CAS  Google Scholar 

  51. Katz, M. E., Rice, R. N., & Cheetham, B. F. (1994). Gene, 150, 287–292.

    Article  CAS  Google Scholar 

  52. Katz, M. E., Flynn, P. K., vanKuyk, P. A., & Cheetham, B. F. (1996). Molecular & General Genetics, 250, 715–724.

    CAS  Google Scholar 

  53. McIntyre, M., Berry, D. R., & McNeil, B. (2000). Applied Microbiology and Biotechnology, 53, 235–242.

    Article  CAS  Google Scholar 

  54. Pócsi, I., Prade, R. A., & Pennickx, M. J. (2004). Advances in Microbial Physiology, 49, 1–76.

    Article  CAS  Google Scholar 

  55. Leiter, É., Szappanos, H., Oberparleiter, C., Kaiserere, L., Csernoch, L., Pusztahelyi, T., et al. (2005). Antimicrobial Agents and Chemotherapy, 49, 2445–2453.

    Article  CAS  Google Scholar 

  56. Marx, F., Binder, U., Leiter, É., and Pócsi, I. (2008). Cellular and Molecular Life Sciences, 65, 445–454.

    Article  CAS  Google Scholar 

  57. McIntyre, M., Müller, C., Dynesen, J., & Nielsen, J. (2001). Advances in Biochemical Engineering, Biotechnology, 73, 103–128.

    CAS  Google Scholar 

  58. Bartoshevich, Y. E., & Zaslavskaya, P. L. (1984). Mikrobiologiya, 53, 266–270.

    CAS  Google Scholar 

  59. Ilmén, M., Thrane, C., & Pentillä, M. (1996). Molecular & General Genetics, 251, 451–460.

    Google Scholar 

  60. Mach, R. L., Strauss, J., Zeilinger, S., Schindler, M., & Kubicek, C. P. (1996). Molecular Microbiology, 21, 1273–1281.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Prof. Dr. Margaret Katz (University of New England, Armidale, New South Wales, Australia) for providing the MK189 and MK191 strains. One of us (E.T.) was awarded with a Mecenatura Scholarship. I.P. was supported by GENOMNANOTECH-DEBRET (RET-06/2004) and the Öveges József Program of the Hungarian National Office for Research and Technology (grant reference numbers OMFB 01501/2006 and 01528/2006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tamás Emri or István Pócsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emri, T., Molnár, Z., Szilágyi, M. et al. Regulation of Autolysis in Aspergillus nidulans . Appl Biochem Biotechnol 151, 211–220 (2008). https://doi.org/10.1007/s12010-008-8174-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8174-7

Keywords

Navigation