Skip to main content
Log in

Biotreatment of High Strength Nitrate Waste Using Immobilized Preadapted Sludge

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

One of the major wastes generated by fertilizer, explosive, and nuclear industries are nitrate (as high as 1,000 ppm NO3N) whose removal before disposal has become a growing concern. In this study, an active denitrifying sludge was immobilized onto support materials like cloth and polyurethane foam and their denitrification efficiency on high nitrate wastes [1,000 ppm NO3 (225 ppm NO3N), 5,000 ppm NO3 (1,129 ppm NO3N), 7,500 ppm NO3 (1,693 ppm NO3 N)] was studied. Results showed complete degradation of the nitrate wastes (225 ppm NO3N, 1,129 ppm NO3N, and 1,693 ppm NO3N) without any accumulation of nitrite in a period of only 1, 4, and 10 h, respectively. Based on adhering and entrapment principle, an immobilization unit was developed using a combination of cloth and foam as well as both individually. This system used for treating such high nitrate wastes was found to be quite effective in waste water treatment, particularly in problems associated with solid–liquid separation. The batch column reactor was run in about 45 batches without any loss in activity or reactor stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bouchard, D. C., Williams, M. K., & Surampalli, R. Y. (1992). Journal of the American Water Works Association, 84, 85–90.

    CAS  Google Scholar 

  2. Young, J. C., & Yang, B. S. (1989). Pollution Control Federation, 61, 1576–1587.

    CAS  Google Scholar 

  3. Albagnae, G. (1990). Water Science and Technology, 22, 17–24.

    Google Scholar 

  4. Cheng, S. S., Huang, S. Y., Lay, J. J., Tsai, P. S., & Cho, L. T. (1992). Water Science and Technology, 26, 503–510.

    CAS  Google Scholar 

  5. Camargo, S. A. R., & Nour, E. A. A. (2001). Water Science and Technology, 44, 63–70.

    CAS  Google Scholar 

  6. Verrier, D., Mortier, B., & Albagnae, G. (1987). Biotechnology Letters, 10, 735–740.

    Article  Google Scholar 

  7. Vandevivere, P., & Kirchman, D. L. (1993). Applied Environmental and Microbiology, 59, 3280–3286.

    CAS  Google Scholar 

  8. Picanco, A. P., Vallero, M. V. G., Gianotti, E. P., Zaiat, M., & Blundi, C. E. (2001). Water Science and Technology, 44, 197–204.

    CAS  Google Scholar 

  9. Huysman, P., van Meneen, P., van Assche, P., & Verstraete, W. (1983). Biotechnology Letters, 5, 643–648.

    Article  Google Scholar 

  10. Calzada, J. F., Arriola, M. C., Castañeda, J. E., Godoy, J. E., & Rolz, C. (1984). Biotechnology Letters, 6, 385–388.

    Article  CAS  Google Scholar 

  11. Gizgen, H. J., Schoenmakers, T. J. M., Caerteling, C. G. M., & Vogels, G. D. (1988). Biotechnology Letters, 10, 61–66.

    Article  Google Scholar 

  12. Zaiat, M., Vieira, L. G. T., & Foresti, E. (1997). Water Research, 31, 1760–1766.

    Article  CAS  Google Scholar 

  13. Havens, P. L., & Howard, F. R. (1993). Industrial & Engineering Chemistry Research, 32, 2254–2258.

    Article  CAS  Google Scholar 

  14. Varesche, M. B., Zaiat, M., Vieira, L. G. T., Vazoller, R. F., & Foresti, E. (1997). Applied Microbiology and Biotechnology, 48, 534–538.

    Article  CAS  Google Scholar 

  15. D’Souza, S. F., & Kamath, N. (1988). Applied Microbiology and Biotechnology, 29, 136–140.

    Article  CAS  Google Scholar 

  16. Joshi, S., & Yamazaki, H. (1984). Biotechnology Letters, 6, 797–802.

    Article  CAS  Google Scholar 

  17. D’Souza, S. F., & Kubal, B. S. (2002). Journal of Biochemical and Biophysical Methods, 51, 151–159.

    Article  CAS  Google Scholar 

  18. Lewis, V. P., & Yang, S. T. (1992). Biotechnology and Bioengineering, 40, 465–474.

    Article  CAS  Google Scholar 

  19. D’Souza, S. F., & Melo, J. S. (2001). Process Biochemistry, 36, 677–681.

    Article  CAS  Google Scholar 

  20. Dhamole, P. B., Nair, R. R., D’Souza, S. F., & Lele, S. S. (2007). Bioresource Technology, 98, 247–252.

    Article  CAS  Google Scholar 

  21. Nair, R. R., Dhamole, P. B., Lele, S. S., & D’Souza, S. F. (2007). Chemosphere, 67, 1612–1617.

    Article  CAS  Google Scholar 

  22. D’Souza, S. F., & Kamath, N. (1991). Enzyme and Microbial Technology, 13, 935–938.

    Article  Google Scholar 

  23. Marshall, R. C. (1984). In Microbial adhesion and aggregation. New York: Springer.

Download references

Acknowledgments

The authors thank Department of Atomic Energy (India) for funding this work and Rashtriya Chemicals and Fertilizers, Mumbai (India) for providing the sludge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislaus F. D’Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nair, R.R., Dhamole, P.B., Lele, S.S. et al. Biotreatment of High Strength Nitrate Waste Using Immobilized Preadapted Sludge. Appl Biochem Biotechnol 151, 193–200 (2008). https://doi.org/10.1007/s12010-008-8170-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8170-y

Keywords

Navigation