Skip to main content
Log in

Bioethanol Production Optimization: A Thermodynamic Analysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, the phase equilibrium of binary mixtures for bioethanol production by continuous extractive process was studied. The process is composed of four interlinked units: fermentor, centrifuge, cell treatment unit, and flash vessel (ethanol-congener separation unit). A proposal for modeling the vapor–liquid equilibrium in binary mixtures found in the flash vessel has been considered. This approach uses the Predictive Soave–Redlich–Kwong equation of state, with original and modified molecular parameters. The congeners considered were acetic acid, acetaldehyde, furfural, methanol, and 1-pentanol. The results show that the introduction of new molecular parameters r and q in the UNIFAC model gives more accurate predictions for the concentration of the congener in the gas phase for binary and ternary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ϕ i :

Fugacity coefficients of component i

q :

Area molecular parameters in the UNIFAC model

r :

Volume molecular parameters in the UNIFAC model

x i :

Mole fraction in the liquid phase

y i :

Mole fraction in the vapor phase

P :

Pressure of the system

T :

Temperature of the system

References

  1. Silva, F. L. H., Rodrigues, M. I., & Maugeri, F. (1999). Journal of Chemical Technology and Biotechnology, 74, 176–182.

    Article  Google Scholar 

  2. Andrietta, S. R., & Maugeri, F. (1994). Advances in Bioprocess Engineering, 1, 47–52.

    Google Scholar 

  3. Cardona, A. C., & Sánchez, O. J. (2007). Bioresource Technology, 98, 2415–2457.

    Article  CAS  Google Scholar 

  4. Holderbaum, T., & Gmehling, J. (1991). Fluid Phase Equilibria, 70, 251–265.

    Article  CAS  Google Scholar 

  5. Monbouquette, H. G. (1987). Biotechnology and Bioengineering, 29, 1075–1080.

    Article  CAS  Google Scholar 

  6. Monbouquette, H. G. (1992). Biotechnology and Bioengineering, 39, 498–503.

    Article  CAS  Google Scholar 

  7. Atala, D. I. P., Costa, A. C., Maciel Filho, R., & Maugeri, F. (2001). Applied Biochemistry and Biotechnology, 91–93, 353–366.

    Article  Google Scholar 

  8. Costa, A. C., Atala, D. I. P., Maugeri, F., & Maciel Filho, R. (2001). Process Biochemistry, 37, 125–137.

    Article  CAS  Google Scholar 

  9. Huron, M. I., & Vidal, J. (1979). Fluid Phase Equilibria, 3, 255–271.

    Article  CAS  Google Scholar 

  10. Prausnitz, J. M., Lichtenthaler, R. N., & Azevedo, E. G. (1999). Molecular Thermodynamics of Fluid-Phase Equilibria. New Jersey: Prentice Hall International Series.

    Google Scholar 

  11. Soave, G. (1972). Chemical Engineering Science, 27, 1197–1203.

    Article  CAS  Google Scholar 

  12. Mathias, P. M., & Copeman, T. W. (1983). Fluid Phase Equilibria, 13, 91–108.

    Article  CAS  Google Scholar 

  13. Mollerup, J. (1981). Fluid Phase Equilibria, 7, 121–138.

    Article  CAS  Google Scholar 

  14. Fredenslund, Aa., Gmehling, J., & Rasmussen, P. (1977). Vapor–Liquid Equilibria Using UNIFAC. Amsterdam: Elsevier.

    Google Scholar 

  15. Horstmann, S., Fischer, K., & Gmehling, J. (2005). Chemical Engineering Communications, 192, 336–350.

    Article  CAS  Google Scholar 

  16. Gmehling, J., Li, J., & Schiller, M. (1993). Industrial & Engineering Chemistry Research, 32, 178–193.

    Article  CAS  Google Scholar 

  17. Diadem Public 1.2. (2000). The DIPPR Information and Data Evaluation Manager.

  18. Gmehling, J., Onken, U., & Grenzheuser, P. (1982). Vapor liquid equilibrium data collection. Frankfurt: DECHEMA Chemistry Data Series.

    Google Scholar 

  19. Álvarez, V. H., Larico, R., Yanos, Y., & Aznar, M. (2007). Brazilian Journal of Chemical Engineering, in press.

Download references

Acknowledgments

The authors acknowledge Fundação de Amparo à Pesquisa de Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmer Ccopa Rivera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Álvarez, V.H., Rivera, E.C., Costa, A.C. et al. Bioethanol Production Optimization: A Thermodynamic Analysis. Appl Biochem Biotechnol 148, 141–149 (2008). https://doi.org/10.1007/s12010-008-8132-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8132-4

Keywords

Navigation