Skip to main content
Log in

Yeast Biomass Production in Brewery’s Spent Grains Hemicellulosic Hydrolyzate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery’s spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h−1, 0.61 g g−1, and 0.56 g l−1 h−1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Werpy, T., Petersen, G., Aden, A., Bozell, J., Holladay, J., White, J., et al. (2004). Top value added chemicals from biomass. Volume I—Results of screening for potential candidates from sugars and synthesis gas. Oak Ridge, TN: U.S. Department of Energy (DOE).

    Google Scholar 

  2. Carvalheiro, F., Duarte, L. C., Lopes, S., Parajó, J. C., Pereira, H., & Gírio, F. M. (2006). Journal of Industrial Microbiology & Biotechnology, 33, 646–654.

    Article  CAS  Google Scholar 

  3. Tejayadi, S., & Cheryan, M. (1995). Applied Microbiology and Biotechnology, 43, 242–248.

    Article  CAS  Google Scholar 

  4. Zaldivar, J., Nielsen, J., & Olsson, L. (2001) Applied Microbiology and Biotechnology, 56, 17–34.

    Article  CAS  Google Scholar 

  5. European Food Safety Authority (2005). QPS: Qualified Presumption of Safety of micro-organisms in food and feed. EFSA, Parma, Italy.

  6. Meyer, P. S., du Preez, J. C., & Kilian, S. G. (1992). Biotechnology & Bioengineering, 40, 353–358.

    Article  CAS  Google Scholar 

  7. Pessoa, A., Jr., Mancilha, I. M., & Sato, S. (1996). Journal of Biotechnology, 51, 83–88.

    Article  CAS  Google Scholar 

  8. Nigam, J. N. (2000). World Journal of Microbiology & Biotechnology, 16, 367–372.

    Article  CAS  Google Scholar 

  9. Jeffries, T. W. (2006). Current Opinion in Biotechnology, 17, 320–326.

    Article  CAS  Google Scholar 

  10. Ballesteros, M., Oliva, J. M., Negro, M. J., Manzanares, P., & Ballesteros, I. (2004). Process Biochemistry, 39, 1843–1848.

    Article  CAS  Google Scholar 

  11. Revillion, J. P. D., Brandelli, A., & Ayub, M. A. Z. (2003). Brazilian Archives of Biology and Technology, 46, 121–127.

    Article  CAS  Google Scholar 

  12. Bergkamp, R. J., Bootsman, T. C., Toschka, H. Y., Mooren, A. T., Kox, L., Verbakel, J. M., et al. (1993) Applied Microbiology and Biotechnology, 40, 309–317.

    Article  CAS  Google Scholar 

  13. Rivas, B., Torre, P., Domínguez, J. M., Converti, A., & Parajó, J. C. (2006). Journal of Agricultural and Food Chemistry, 54, 4430–4435.

    Article  CAS  Google Scholar 

  14. Terentiev, Y., Pico, A. H., Boer, E., Wartmann, T., Klabunde, J., Breuer, U., et al. (2004). Journal of Industrial Microbiology & Biotechnology, 31, 223–228.

    Article  CAS  Google Scholar 

  15. Carvalheiro, F., Esteves, M. P., Parajó, J. C., Pereira, H., Gírio, F. M. (2004). Bioresource Technology, 91, 93–100.

    Article  CAS  Google Scholar 

  16. Duarte, L. C., Carvalheiro, F., Lopes, S., Marques, S., Parajó, J. C., & Gírio, F. M. (2004). Applied Biochemistry and Biotechnology, 113–116, 1041–1058.

    Article  Google Scholar 

  17. Duarte, L. C., Carvalheiro, F., Neves, I., & Gírio, F. M. (2005) Applied Biochemistry and Biotechnology, 121, 413–425.

    Article  Google Scholar 

  18. Graham, H. D. (1992). Journal of Agricultural and Food Chemistry, 40, 801–805.

    Article  CAS  Google Scholar 

  19. Browning, B. L. (1967). Methods of wood chemistry. In K. V. Sarkeanen, & C. H. Ludwig (Eds.), pp. 795–798. New York: John Wiley & Sons.

  20. AOAC (1975). AOAC official methods of analysis. Washington, DC: AOAC International.

    Google Scholar 

  21. Herbert, D., Phipps, P. J., & Strange, R. E. (1971). Methods in microbiology. In J. R. Norris & D. W. Ribbons (Eds.), pp. 209–344. London: Academic Press.

  22. Benthin, S., Nielsen, J., & Villadsen, J. (1991). Biotechnology Techniques, 5, 39–42.

    Article  CAS  Google Scholar 

  23. Paul, D., Mukhopadhyay, R., Chatterjee, B. P., & Guha, A. K. (2002). Applied Biochemistry and Biotechnology, 97, 209–218.

    Article  CAS  Google Scholar 

  24. 1998. Commission Directive 98/64/EC. Establishing Community methods of analysis for the determination of aminoacids, crude oils and fats, and olaquindox in feedingstuffs and amending Directive 71/393/EEC.

  25. Lepage, G., & Roy, C. C. (1986). Journal of Lipid Research, 27, 114–120.

    CAS  Google Scholar 

  26. Silva, T. L., Santo, F. E., Pereira, P. T., & Roseiro, J. C. P. (2006). Journal of Basic Microbiology, 46, 34–46.

    Article  CAS  Google Scholar 

  27. Mussatto, S. I., Dragone, G., & Roberto, I. C. (2006). Journal of Cereal Science, 43, 1–14.

    Article  CAS  Google Scholar 

  28. Almeida e Silva, J. B., Mancilha, I. M., Vannetti, M. C. D., & Teixeira, M. A. (1995). Bioresource technology, 52, 197–200.

    Article  CAS  Google Scholar 

  29. Carvalheiro, F., Duarte, L. C., Lopes, S., Parajó, J. C., Pereira, H., & Gírio, F. M. (2005).Process Biochemistry, 40, 1215–1223.

    Article  CAS  Google Scholar 

  30. Nobre, A., Duarte, L. C., Roseiro, J. C., & Gírio, F. M. (2002). Applied Microbiology and Biotechnology, 59, 509–516.

    Article  CAS  Google Scholar 

  31. Breuer, U., & Harms, H. (2006). Yeast, 23, 415–437.

    Article  CAS  Google Scholar 

  32. Rivas, B., Moldes, A. B., Domínguez, J. M., & Parajó, J. C. (2004). International Journal of Food Microbiology, 97, 93–98.

    Article  CAS  Google Scholar 

  33. Tavares, J. M., Duarte, L. C., Amaral-Collaço, M. T., & Gírio, F. M. (1999). FEMS Microbiology Letters, 171, 115–120.

    Article  CAS  Google Scholar 

  34. Konlani, S., Delgenes, J. P., Moletta, R., Traore, A., & Doh, A. (1996). Bioresource technology, 57, 275–281.

    Article  CAS  Google Scholar 

  35. Anupama & Ravindra, P. (2000). Biotechnology Advances, 18, 459–479.

    Article  CAS  Google Scholar 

  36. Zhang, J. Y., Reddy, J., Buckland, B., & Greasham, R. (2003) Biotechnology & Bioengineering, 82, 640–652.

    Article  CAS  Google Scholar 

  37. Baracat-Pereira, M. C., Coelho, J. L. C., Minussi, R. C., Chaves-Alves, V. M., Brandão, R. L., & Silva, D. O. (1999). Applied Biochemistry and Biotechnology, 76, 129–141.

    Article  CAS  Google Scholar 

  38. Shay, L. K., & Wegner, G. H. (1986). Journal of Dairy Science, 69, 676–683.

    Article  CAS  Google Scholar 

  39. El-Samragy, Y. A., Chen, J. H., & Zall, R. R. (1988). Process Biochemistry, 23, 28–30.

    CAS  Google Scholar 

  40. Rajoka, M. I., Kiani, M. A. T., Khan, S., Awan, M. S., & Hashmi, A. S. (2004) World Journal of Microbiology & Biotechnology, 20, 297–301.

    Article  CAS  Google Scholar 

  41. Saldanha-da-Gama, A., Malfeito-Ferreira, M., & Loureiro, V. (1997). International Journal of Food Microbiology, 37, 201–207.

    Article  CAS  Google Scholar 

  42. Shahidi, F., & Wanasundara, U. N. (1998). Trends in Food Science & Technology, 9, 230–240.

    Article  CAS  Google Scholar 

  43. You, K. M., Rosenfield, C. L., & Knipple, D. C. (2003). Applied and Environmental Microbiology, 69, 1499–1503.

    Article  CAS  Google Scholar 

  44. Silva, T. L., Pinheiro, H. M., & Roseiro, J. C. (2003). Enzyme and Microbial Technology, 32, 880–888.

    Article  CAS  Google Scholar 

  45. Olsen, J., & Allermann, K. (1987). Basic Biotechnology. In J., Bu’Lock, & B., Kristiansen (Eds.), pp 285–308. London: Academic Press.

Download references

Acknowledgements

The authors thank Amélia Marques, Carlos Barata, and Céu Penedo for their technical support and also acknowledge Ana Partidário/Maria João Borges and Teresa Lopes da Silva for making possible the amino acid and fatty acid analysis, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco M. Gírio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duarte, L.C., Carvalheiro, F., Lopes, S. et al. Yeast Biomass Production in Brewery’s Spent Grains Hemicellulosic Hydrolyzate. Appl Biochem Biotechnol 148, 119–129 (2008). https://doi.org/10.1007/s12010-007-8046-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8046-6

Keywords

Navigation