Skip to main content
Log in

Multi-response optimization and characterization for micro-EDM drilling of stainless steel (AISI 304) using a hybrid DFA-fuzzy logic approach

  • Original Article
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Due to high strength, biocompatibility and higher corrosion resistance, stainless steels are widely used in aerospace, medical, chemical, and automotive sectors. However, conventional machining of these materials does not produce higher accuracy because of their characteristics, which lead to the tendency of build-up edge formation, high tool wear and poor surface quality. Among numerous non-conventional machining techniques, electrical discharge machining is considered one of the highly efficient and economically viable methods for machining stainless steel. In the present study, microelectric discharge drilling is conducted on an AISI 304 stainless steel sheet using a 496 µm diameter WC tool electrode. The parametric impact of feed rate, voltage, and capacitance on performance characteristics like material removal rate, overcut, circularity error, and taper angle was studied after conducting a full factorial of 48 experiments. Capacitance has been found the most essential process parameter for influencing all machining outcomes considered in this investigation. Furthermore, a desirability function integrated with fuzzy logic is used to optimize all performance measures simultaneously. The optimal setting proposed by this approach is at voltage = 100 V, capacitance = 100 pF and feed rate = 20 µm/s. The field emission scanning electron microscope (FESEM) micrographs illustrate that lower discharge energy settings result in better geometrical accuracy and surface integrity. The energy-dispersive X-ray spectroscopy (EDAX) analysis revealed the migration of elements from the tool material and dielectric medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

DFA:

Desirability function approach

FESEM:

Field emission scanning electron microscope

EDAX:

Energy-dispersive X-ray spectroscopy

EDM:

Electrical discharge machining

WC:

Tungsten carbide

TWR:

Tool wear rate

ANN:

Artificial neural network

PCA:

Principal component analysis

GRA:

Grey relational analysis

PSO:

Particle swarm optimization

MOGA:

Multi-objective genetic algorism

RC:

Resistance capacitance

ANOVA:

Analysis of variance

DOE:

Design of experiments

MF:

Membership functions

DFRG:

Desirability fuzzy reasoning grade

R2 :

Coefficient of correlation

R2 (adj):

Adjusted coefficient of correlation

\(y\) :

Machining response

\({y}_{min}\) :

The lower acceptable limit of output

\({y}_{max}\) :

The upper acceptable limit of output

\({d}_{i}\) :

Individual desirability

\(r\) :

Desirability function index

\({D}_{o}\) :

Overall desirability

MRR:

Material removal rate

OC:

Overcut

CE:

Circularity error

TA:

Taper angle

V:

Voltage

C:

Capacitance

FR:

Feed rate

References

  1. Jadhav, A., Kumar, S.: An experimental study on influence of process parameters on dross properties in laser machining of AISI 304 material. J. Manuf. Eng. 14(3), 111–116 (2019). https://doi.org/10.37255/jme.v4i3pp111-116

    Article  Google Scholar 

  2. Hoang, T.D., Mai, T.H., Nguyen, V.D.: Enhancement of deep drilling for stainless steels by nano-lubricant through twist drill bits. Lubricants 10(8), 173 (2022). https://doi.org/10.3390/lubricants10080173

    Article  Google Scholar 

  3. Zhuang, K., Zhou, S., Zou, L., Lin, L., Liu, Y., Weng, J., Gao, J.: Numerical investigation of sequential cuts residual stress considering tool edge radius in machining of AISI 304 stainless steel. Simul. Model. Pract. Theory 118, 102525 (2022). https://doi.org/10.1016/j.simpat.2022.102525

    Article  Google Scholar 

  4. Tian, Y., Zou, P., Yang, X., Kang, D.: Study on chip morphology and surface roughness in ultrasonically assisted drilling of 304 stainless steel. Int. J. Adv. Manuf. Technol. 108, 2079–2090 (2020). https://doi.org/10.1007/s00170-020-05440-5

    Article  Google Scholar 

  5. Arif, R., Fromentin, G., Rossi, F., Marcon, B.: Investigations on drilling performance of high resistant austenitic stainless steel. J. Manuf. Process. 56, 856–866 (2020). https://doi.org/10.1016/j.jmapro.2020.05.038

    Article  Google Scholar 

  6. Sultan, A.Z., Sharif, S., Nor, F.M., Kurniawan, D.: Minimum quantity of lubricant drilling of stainless steel using refined palm olein: Effect of coating tool on surface roughness and tool wear. Procedia Manuf. 30, 427–434 (2019). https://doi.org/10.1016/j.promfg.2019.02.059

    Article  Google Scholar 

  7. Kumar, M.P., Ahmed, L.S.: Drilling of AISI 304 stainless steel under liquid nitrogen cooling: a comparison with flood cooling. Mater. Today: Proc. 4(2), 1518–1524 (2017). https://doi.org/10.1016/j.matpr.2017.01.174

    Article  Google Scholar 

  8. Majumder, T., Patowari, P.K.: A review on the use of microslit for various applications and its fabrication. J. Braz. Soc. Mech. Sci. Eng. 46(2), 106 (2024)

    Article  Google Scholar 

  9. Moradi, M., AbbasiRad, R., Ghoreishi, M., Abdollahi, H., Rostami, M.: Investigation and optimization of EDM milling and its comparison with die sink EDM. ADMT J. 10(3), 31–40 (2017)

    Google Scholar 

  10. Kar, S., Patowari, P.K.: An experimental investigation of the erosion phenomenon in µED-milling of titanium and its parametric optimization using desirability analysis. Arab. J. Sci. Eng. 47(7), 8847–8861 (2022). https://doi.org/10.1007/s13369-021-06387-9

    Article  Google Scholar 

  11. Mascaraque-Ramírez, C., Franco, P.: High-precision machining in the shipbuilding industry. Applicability and advantages of electro discharge machining technology. Ships Offshore Struct 13(7), 750–758 (2018). https://doi.org/10.1080/17445302.2018.1456813

    Article  Google Scholar 

  12. Masuzawa, T.: State of the art of micromachining. CIRP Ann. 49(2), 473–488 (2000). https://doi.org/10.1016/S0007-8506(07)63451-9

    Article  Google Scholar 

  13. Yu, Z.Y., Masuzawa, T., Fujino, M.: Micro-EDM for three-dimensional cavities-development of uniform wear method. CIRP Ann. 47(1), 169–172 (1998). https://doi.org/10.1016/S0007-8506(07)62810-8

    Article  Google Scholar 

  14. Puertas, I., Luis, C.J., Alvarez, L.: Analysis of the influence of EDM parameters on surface quality, MRR and EW of WC–Co. J. Mater. Process. Technol. 153, 1026–1032 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.346

    Article  Google Scholar 

  15. Kar, S., Patowari, P.K.: Experimental investigation of machinability and surface characteristics in microelectrical discharge milling of titanium, stainless steel and copper. Arab. J. Sci. Eng. 44(9), 7843–7858 (2019). https://doi.org/10.1007/s13369-019-03918-3

    Article  Google Scholar 

  16. Jahan, M.P., Saleh, T., Rahman, M., Wong, Y.S.: Development, modeling, and experimental investigation of low frequency workpiece vibration-assisted micro-EDM of tungsten carbide. J. Manuf. Sci. Eng. (2010). https://doi.org/10.1115/1.4002457

    Article  Google Scholar 

  17. D’rso, G., Maccarini, G., Ravasio, C.: Process performance of micro-EDM drilling of stainless steel. Int. J. Adv. Manuf. Technol. 72, 1287–1298 (2014). https://doi.org/10.1007/s00170-014-5739-1

    Article  Google Scholar 

  18. Giridharan, A., Oommen, J., Srisailesh, V.S., Mohan, R.: Electrical discharge drilling of micro-hole on inconel 718 using rotary tubular electrode. Materials Today: Proceedings 22, 1723–1730 (2020). https://doi.org/10.1016/j.matpr.2020.02.191

    Article  Google Scholar 

  19. Tiwary, A.P., Pradhan, B.B., Bhattacharyya, B.: Study on the influence of micro-EDM process parameters during machining of Ti–6Al–4V superalloy. Int. J. Adv. Manuf. Technol. 76, 151–160 (2015). https://doi.org/10.1007/s00170-013-5557-x

    Article  Google Scholar 

  20. Öpöz, T.T., Ekmekci, B., Erden, A.: An experimental study on the geometry of microholes in microelectric discharge machining. Mater. Manuf. Process. 24(12), 1236–1241 (2009). https://doi.org/10.1080/10426910903129422

    Article  Google Scholar 

  21. Mondol, K., Azad, M.S., Puri, A.B.: Analysis of micro-electrical discharge drilling characteristics in a thin plate of Ti–6Al–4 V. Int. J. Adv. Manuf. Technol. 76, 141–150 (2015). https://doi.org/10.1007/s00170-013-5414-y

    Article  Google Scholar 

  22. Somashekhar, K.P., Mathew, J., Ramachandran, N.: Multi-objective optimization of micro wire electric discharge machining parameters using grey relational analysis with Taguchi method. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 225(7), 1742–1753 (2011). https://doi.org/10.1177/0954406211400553

    Article  Google Scholar 

  23. Nguyen, P.H., Pham, D.V., Shirguppikar, S., Nguyen, T.N., Nguyen, T.C., Nguyen, L.T.: Multi-objective optimization of micro EDM using TOPSIS method with Tungsten carbide electrode. Sādhanā 47(3), 133 (2022). https://doi.org/10.1007/s12046-022-01900-8

    Article  Google Scholar 

  24. Kar, S., Sarmah, P., Baroi, B.K., Patowari, P.K.: Parametric optimization of µEDM drilling on titanium using principal component analysis. J. Braz. Soc. Mech. Sci. Eng. 43, 1–17 (2021). https://doi.org/10.1007/s40430-021-03249-1

    Article  Google Scholar 

  25. Kebede, A.W., Patowari, P.K., Sahoo, C.K.: Machining efficiency and geometrical accuracy on micro-EDM drilling of titanium alloy. Mater. Manuf. Process. (2024). https://doi.org/10.1080/10426914.2024.2323438

    Article  Google Scholar 

  26. Mohanty, C.P., Mahapatra, S.S., Singh, M.R.: A particle swarm approach for multi-objective optimization of electrical discharge machining process. J. Intell. Manuf. 27, 1171–1190 (2016). https://doi.org/10.1007/s10845-014-0942-3

    Article  Google Scholar 

  27. Quarto, M., D’Urso, G., Giardini, C.: Micro-EDM optimization through particle swarm algorithm and artificial neural network. Precis. Eng. 73, 63–70 (2022). https://doi.org/10.1016/j.precisioneng.2021.08.018

    Article  Google Scholar 

  28. Dutta, S., Sarma, D.K.: Multi-objective optimization of µ-EDM parameters for µ-hole drilling on Hastelloy C 276 super alloy using Response Surface Methodology and multi-objective genetic algorithm. CIRP J. Manuf. Sci. Technol. 39, 115–133 (2022). https://doi.org/10.1016/j.cirpj.2022.07.011

    Article  Google Scholar 

  29. Kar, S.K., Mishra, P.K., Sahu, A.K., Mahapatra, S.S., Thomas, J.: Multi-objective optimization of wire-EDM of Inconel 625 by using desirability function approach. Int. J. Interact. Design Manuf. (IJIDeM) 17(2), 931–938 (2023). https://doi.org/10.1007/s12008-022-01184-6

    Article  Google Scholar 

  30. Meel, R., Singh, V., Katyal, P., Gupta, M.: Optimization of process parameters of micro-EDD/EDM for magnesium alloy using Taguchi based GRA and TOPSIS method. Materials Today: Proceedings 51, 269–275 (2022). https://doi.org/10.1016/j.matpr.2021.05.287

    Article  Google Scholar 

  31. Sarıkaya, M., Yılmaz, V.: Optimization and predictive modeling using S/N, RSM, RA and ANNs for micro-electrical discharge drilling of AISI 304 stainless steel. Neural Comput. Appl. 30, 1503–1517 (2018). https://doi.org/10.1007/s00521-016-2775-9

    Article  Google Scholar 

  32. Kumar, P., Yadav, S.K.S.: Multi-objective optimization of electrical discharge drilling (EDD) process using PCA based grey relational analysis. Materials Today: Proceedings 26, 2013–2020 (2020). https://doi.org/10.1016/j.matpr.2020.02.438

    Article  Google Scholar 

  33. Ahuja, N., Batra, U., Kumar, K.: Multicharacteristics optimization of electrical discharge micro hole drilling in Mg alloy using hybrid approach of GRA–regression–PSO. Grey Syst. Theory Appl. 11(1), 136–151 (2021). https://doi.org/10.1108/GS-03-2020-0029

    Article  Google Scholar 

  34. Kumar, L., Kumar, K., Chhabra, D.: Experimental investigations of electrical discharge micro-drilling for Mg-alloy and multi-response optimization using MOGA-ANN. CIRP J. Manuf. Sci. Technol. 38, 774–786 (2022). https://doi.org/10.1016/j.cirpj.2022.06.014

    Article  Google Scholar 

  35. Singh, N., Bharti, P.S.: Multi-response optimisation of micro-EDM drilling of Ti-5.6 Al-3.6 V using grey-fuzzy logic based approach. Adv. Mater. Process. Technol. (2022). https://doi.org/10.1080/2374068X.2022.2096832

    Article  Google Scholar 

  36. Derringer, G., Suich, R.: Simultaneous optimization of several response variables. J. Qual. Technol. 12(4), 214–219 (1980). https://doi.org/10.1080/00224065.1980.11980968

    Article  Google Scholar 

  37. Singh, A., Datta, S., Mahapatra, S.S., Singha, T., Majumdar, G.: Optimization of bead geometry of submerged arc weld using fuzzy based desirability function approach. J. Intell. Manuf. 24, 35–44 (2013). https://doi.org/10.1007/s10845-011-0535-3

    Article  Google Scholar 

  38. Zadeh, L.A.: Fuzzy sets. Inf. Control. 8(3), 338–353 (1965)

    Article  Google Scholar 

  39. Zimmermann, H.J.: Applications of fuzzy set theory to mathematical programming. Readings in Fuzzy Sets for Intelligent Systems, pp. 795–809. Elsevier (1993)

    Book  Google Scholar 

  40. Jahan, M.P., Wong, Y.S., Rahman, M.: A comparative experimental investigation of deep-hole micro-EDM drilling capability for cemented carbide (WC-Co) against austenitic stainless steel (SUS 304). Int. J. Adv. Manuf. Technol. 46, 1145–1160 (2010). https://doi.org/10.1007/s00170-009-2167-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alemu Workie Kebede.

Ethics declarations

Conflict of interest

The authors declare no competing interests relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kebede, A.W., Patowari, P.K. & Sahoo, C.K. Multi-response optimization and characterization for micro-EDM drilling of stainless steel (AISI 304) using a hybrid DFA-fuzzy logic approach. Int J Interact Des Manuf (2024). https://doi.org/10.1007/s12008-024-01873-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-024-01873-4

Keywords

Navigation