Skip to main content
Log in

Parametric optimization of µEDM drilling on titanium using principal component analysis

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Titanium (Ti) is a hard and difficult to machine material which has high tensile strength and toughness at extreme temperature. Microelectrical discharge machining (µEDM) is primarily used to machine hard and brittle materials very effectively. In this paper, µEDM drilling is performed on Ti grade 2 alloy using copper as a tool. The parametric effect of voltage, capacitance and feed rate (FR) on response measures such as material removal rate, linear tool wear rate, overcut and taper is investigated after performing full factorial 27 experimental runs. Capacitance and voltage are found to be the most significant factors as compared to FR for all response measures. Micrographic analysis reveals minimum burr formation, recast layer and circularity error to occur at lower level of capacitance and voltage. The quality of microholes deteriorates with increment in capacitance and voltage due to the formation of bigger and deeper craters. An online monitoring is performed by plotting the data of machining time and work feed of the tool movement. Significant short circuiting is observed at lower levels of voltage and capacitance, which results in higher machining time due to lower discharge energy. Further, principal component analysis is employed to find out the weightage value of each response and simultaneously performs optimization of all the responses. Microhole with minimum burr formation, recast layer and circularity error is achieved at highest overall principal component index of 0.263, performed at 120 V, 100 pF and 10 µm/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Das AK, Kumar P, Sethi A et al (2016) Influence of process parameters on the surface integrity of micro-holes of SS304 obtained by micro-EDM. J Braz Soc Mech Sci Eng 38:2029–2037. https://doi.org/10.1007/s40430-016-0488-8

    Article  Google Scholar 

  2. Kar S, Patowari PK (2018) Electrode wear phenomenon and its compensation in micro electrical discharge milling: A review. Mater Manuf Process 33:1491–1517. https://doi.org/10.1080/10426914.2018.1453144

    Article  Google Scholar 

  3. Singh AK, Patowari PK, Deshpande NV (2019) Analysis of micro-rods machined using reverse micro-EDM. J Brazilian Soc Mech Sci Eng. https://doi.org/10.1007/s40430-018-1519-4

    Article  Google Scholar 

  4. Dilip DG, Ananthan SP, Panda S, Mathew J (2019) Numerical simulation of the influence of fluid motion in mushy zone during micro-EDM on the crater surface profile of Inconel 718 alloy. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-019-1595-0

    Article  Google Scholar 

  5. Tamang SK, Natarajan N, Chandrasekaran M (2017) Optimization of EDM process in machining micro holes for improvement of hole quality. J Braz Soc Mech Sci Eng 39:1277–1287. https://doi.org/10.1007/s40430-016-0630-7

    Article  Google Scholar 

  6. Hourmand M, Sarhan AAD, Sayuti M (2017) Micro-electrode fabrication processes for micro-EDM drilling and milling: a state-of-the-art review. Int J Adv Manuf Technol 91:1023–1056. https://doi.org/10.1007/s00170-016-9671-4

    Article  Google Scholar 

  7. Alavi F, Jahan MP (2017) Optimization of process parameters in micro-EDM of Ti-6Al-4V based on full factorial design. Int J Adv Manuf Technol 92:167–187. https://doi.org/10.1007/s00170-017-0103-x

    Article  Google Scholar 

  8. Meena VK, Azad MS, Singh S, Singh N (2017) Micro-EDM multiple parameter optimization for Cp titanium. Int J Adv Manuf Technol 89:897–904. https://doi.org/10.1007/s00170-016-9130-2

    Article  Google Scholar 

  9. Mondol K, Azad MS, Puri AB (2015) Analysis of micro-electrical discharge drilling characteristics in a thin plate of Ti–6Al–4 V. Int J Adv Manuf Technol 76:141–150. https://doi.org/10.1007/s00170-013-5414-y

    Article  Google Scholar 

  10. Moses MD, Jahan MP (2015) Micro-EDM machinability of difficult-to-cut Ti-6Al-4V against soft brass. Int J Adv Manuf Technol 81:1345–1361. https://doi.org/10.1007/s00170-015-7306-9

    Article  Google Scholar 

  11. Azad MS, Puri AB (2012) Simultaneous optimisation of multiple performance characteristics in micro-EDM drilling of titanium alloy. Int J Adv Manuf Technol 61:1231–1239. https://doi.org/10.1007/s00170-012-4099-y

    Article  Google Scholar 

  12. D’Urso G, Giardini C, Ravasio C (2018) Effects of Electrode and Workpiece Materials on the Sustainability of Micro-EDM Drilling Process. Int J Precis Eng Manuf 19:1727–1734. https://doi.org/10.1007/s12541-018-0200-2

    Article  Google Scholar 

  13. Plaza S, Sanchez JA, Perez E et al (2014) Experimental study on micro EDM-drilling of Ti6Al4V using helical electrode. Precis Eng 38:821–827. https://doi.org/10.1016/j.precisioneng.2014.04.010

    Article  Google Scholar 

  14. Tiwary AP, Pradhan BB, Bhattacharyya B (2015) Study on the influence of micro-EDM process parameters during machining of Ti–6Al–4V superalloy. Int J Adv Manuf Technol 76:151–160. https://doi.org/10.1007/s00170-013-5557-x

    Article  Google Scholar 

  15. Kumar K, Singh V, Katyal P, Sharma N (2019) EDM μ-drilling in Ti-6Al-7Nb: experimental investigation and optimization using NSGA-II. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-019-04012-6

    Article  Google Scholar 

  16. Rajamanickam S, Prasanna J (2019) Analysis of Recast Layer Wear Rate and Taper Angle in Micro-electrical Discharge Machining Over Ti6Al4V. In: Chandrasekhar U, Yang LJ Gowthaman S (eds) Lecture Notes in Mechanical Engineering, Springer, Singapore, pp. 517–525

  17. Mwangi JW, Bui VD, Thüsing K et al (2020) Characterization of the arcing phenomenon in micro-EDM and its effect on key mechanical properties of medical-grade Nitinol. J Mater Process Technol 275:116334. https://doi.org/10.1016/j.jmatprotec.2019.116334

    Article  Google Scholar 

  18. Abu Qudeiri JE, Mourad A-HI, Ziout A et al (2018) Electric discharge machining of titanium and its alloys: review. Int J Adv Manuf Technol 96:1319–1339. https://doi.org/10.1007/s00170-018-1574-0

    Article  Google Scholar 

  19. Nguyen H-P, Pham V-D, Ngo N-V (2018) Application of TOPSIS to Taguchi method for multi-characteristic optimization of electrical discharge machining with titanium powder mixed into dielectric fluid. Int J Adv Manuf Technol 98:1179–1198. https://doi.org/10.1007/s00170-018-2321-2

    Article  Google Scholar 

  20. Nguyen PH, Banh TL, Mashood KA et al (2020) Application of TGRA-Based Optimisation for Machinability of High-Chromium Tool Steel in the EDM Process. Arab J Sci Eng 45:5555–5562. https://doi.org/10.1007/s13369-020-04456-z

    Article  Google Scholar 

  21. Huu Phan N, Muthuramalingam T (2021) Multi Criteria Decision Making of Vibration Assisted EDM Process Parameters on Machining Silicon Steel Using Taguchi-DEAR Methodology. SILICON 13:1879–1885. https://doi.org/10.1007/s12633-020-00573-4

    Article  Google Scholar 

  22. Huu PN (2020) Multi-objective optimization in titanium powder mixed electrical discharge machining process parameters for die steels. Alexandria Eng J 59:4063–4079. https://doi.org/10.1016/J.AEJ.2020.07.012

    Article  Google Scholar 

  23. Dubey AK, Yadava V (2008) Multi-objective optimization of Nd:YAG laser cutting of nickel-based superalloy sheet using orthogonal array with principal component analysis. Opt Lasers Eng 46:124–132. https://doi.org/10.1016/j.optlaseng.2007.08.011

    Article  Google Scholar 

  24. Jagadish RA (2016) Optimization of process parameters of green electrical discharge machining using principal component analysis (PCA). Int J Adv Manuf Technol 87:1299–1311. https://doi.org/10.1007/s00170-014-6372-8

    Article  Google Scholar 

  25. Majumder H, Paul TR, Dey V et al (2017) Use of PCA-grey analysis and RSM to model cutting time and surface finish of Inconel 800 during wire electro discharge cutting. Measurement 107:19–30. https://doi.org/10.1016/j.measurement.2017.05.007

    Article  Google Scholar 

  26. Tiwary AP, Pradhan BB, Bhattacharyya B (2019) Influence of various metal powder mixed dielectric on micro-EDM characteristics of Ti-6Al-4V. Mater Manuf Process 34:1103–1119. https://doi.org/10.1080/10426914.2019.1628265

    Article  Google Scholar 

  27. Paul TR, Saha A, Majumder H et al (2019) Multi-objective optimization of some correlated process parameters in EDM of Inconel 800 using a hybrid approach. J Braz Soc Mech Sci Eng 41:300. https://doi.org/10.1007/s40430-019-1805-9

    Article  Google Scholar 

  28. Rahul DS, Masanta M (2018) Surface Integrity and Metallurgical Characteristics of the EDMed Work Surfaces of A2 Tool Steel (SAE 304SS), Inconel 601 and Ti-6Al-4V: a Comparative Analysis. SILICON 10:1557–1572. https://doi.org/10.1007/s12633-017-9640-z

    Article  Google Scholar 

  29. Czelusniak T, Higa CF, Torres RD, et al (2019) Materials used for sinking EDM electrodes: a review. J. Brazilian Soc. Mech. Sci. Eng. 41

  30. Gisario A, Mehrpouya M, Venettacci S, Barletta M (2017) Laser-assisted bending of Titanium Grade-2 sheets: Experimental analysis and numerical simulation. Opt Lasers Eng 92:110–119. https://doi.org/10.1016/j.optlaseng.2016.09.004

    Article  Google Scholar 

  31. Kar S, Patowari PK (2019) Experimental Investigation of Machinability and Surface Characteristics in Microelectrical Discharge Milling of Titanium, Stainless Steel and Copper. Arab J Sci Eng 44:7843–7858. https://doi.org/10.1007/s13369-019-03918-3

    Article  Google Scholar 

  32. Jahan MP, Wong YS, Rahman M (2009) A study on the quality micro-hole machining of tungsten carbide by micro-EDM process using transistor and RC-type pulse generator. J Mater Process Technol 209:1706–1716. https://doi.org/10.1016/j.jmatprotec.2008.04.029

    Article  Google Scholar 

  33. Han F, Wachi S, Kunieda M (2004) Improvement of machining characteristics of micro-EDM using transistor type isopulse generator and servo feed control. Precis Eng 28:378–385. https://doi.org/10.1016/J.PRECISIONENG.2003.11.005

    Article  Google Scholar 

  34. Nirala CK, Reddy B, Saha P (2012) Optimization of Process Parameters in Micro Electro- Discharge Drilling [micro EDM-Drilling]: A Taguchi Approach. Adv Mater Res 622–623:30–34

    Article  Google Scholar 

  35. D’Urso G, Maccarini G, Ravasio C (2016) Influence of electrode material in micro-EDM drilling of stainless steel and tungsten carbide. Int J Adv Manuf Technol 85:2013–2025. https://doi.org/10.1007/s00170-015-7010-9

    Article  Google Scholar 

  36. Karthikeyan G, Garg AK, Ramkumar J, Dhamodaran S (2012) A microscopic investigation of machining behavior in μED-milling process. J Manuf Process 14:297–306. https://doi.org/10.1016/j.jmapro.2012.01.003

    Article  Google Scholar 

  37. Jahan MPP, Wong YSS, Rahman M (2009) A study on the fine-finish die-sinking micro-EDM of tungsten carbide using different electrode materials. J Mater Process Technol 209:3956–3967. https://doi.org/10.1016/j.jmatprotec.2008.09.015

    Article  Google Scholar 

  38. Natarajan N, Suresh P (2015) Experimental investigations on the microhole machining of 304 stainless steel by micro-EDM process using RC-type pulse generator. Int J Adv Manuf Technol 77:1741–1750. https://doi.org/10.1007/s00170-014-6494-z

    Article  Google Scholar 

  39. Singh AK, Patowari PK, Chandrasekaran M (2020) Experimental study on drilling micro-hole through micro-EDM and optimization of multiple performance characteristics. J Braz Soc Mech Sci Eng 42:506. https://doi.org/10.1007/s40430-020-02595-w

    Article  Google Scholar 

  40. Jahan MP, Wong YS, Rahman M (2010) A comparative experimental investigation of deep-hole micro-EDM drilling capability for cemented carbide (WC-Co) against austenitic stainless steel (SUS 304). Int J Adv Manuf Technol 46:1145–1160. https://doi.org/10.1007/s00170-009-2167-8

    Article  Google Scholar 

  41. Saxena KK, Srivastava AS, Agarwal S et al (2016) Experimental investigation into the micro-EDM characteristics of conductive SiC. Ceram Int 42:1597–1610. https://doi.org/10.1016/j.ceramint.2015.09.111

    Article  Google Scholar 

  42. Liu C, Duong N, Jahan MP et al (2019) Experimental investigation and numerical simulation of micro-EDM of bulk metallic glass with focus on crater sizes. Procedia Manuf 34:275–286. https://doi.org/10.1016/j.promfg.2019.06.151

    Article  Google Scholar 

  43. Aligiri E, Yeo SH, Tan PC (2010) A new tool wear compensation method based on real-time estimation of material removal volume in micro-EDM. J Mater Process Technol 210:2292–2303. https://doi.org/10.1016/j.jmatprotec.2010.08.024

    Article  Google Scholar 

  44. Pearson K (1901) LIII. On lines and planes of closest fit to systems of points in space. London, Edinburgh, Dublin Philos Mag J Sci 2:559–572. https://doi.org/10.1080/14786440109462720

    Article  MATH  Google Scholar 

  45. Datta S, Nandi G, Bandyopadhyay A, Kumar Pal P (2009) Application of PCA-based hybrid Taguchi method for correlated multicriteria optimization of submerged arc weld: a case study. Int J Adv Manuf Technol 45:276–286. https://doi.org/10.1007/s00170-009-1976-0

    Article  Google Scholar 

  46. Johnson RA, Wichern DW et al (2007) Applied Multivariate Statistical Analysis. Pearson Prentice Hall, New Jersey

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Kar.

Additional information

Technical Editor: Adriano Fagali de Souza.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, S., Sarmah, P., Baroi, B.K. et al. Parametric optimization of µEDM drilling on titanium using principal component analysis. J Braz. Soc. Mech. Sci. Eng. 43, 543 (2021). https://doi.org/10.1007/s40430-021-03249-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03249-1

Keywords

Navigation