Skip to main content
Log in

Machine learning metamodels for thermo-mechanical analysis of friction stir welding

  • Original Article
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

This study explores the development and application of machine learning (ML) metamodels for the thermo-mechanical analysis of Friction Stir Welding (FSW). The main objective is to address the challenge of accurately predicting the thermo-mechanical behaviour of materials in FSW processes. Using finite element models, a high-fidelity dataset consisting of 20 Hammersley design datapoints is generated which is then used to develop a low-fidelity dataset of 420 datapoints using KNN (K-Nearest Neighbor) imputation. This low-fidelity dataset is used to train and test nine different ML metamodels (namely Linear Regression, Random Forest (RF), Support Vector Machines (SVM), AdaBoost, Gaussian Process, Gradient Boosting, Decision Tree, Histogram-based Gradient Boosting and Extreme Gradient Boosting). The performance of these metamodels is evaluated based on various metrics like \({R}^{2}\) (Coefficient of Determination), MAE (Mean Absolute Error) and MSE (Mean Squared Error). The findings reveal significant variance in the metamodels’ performance. Notably, Decision Tree, Gradient Boosting, XGB (Extreme Gradient Boosting) and Random Forest metamodels are found to be the top four performers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The data used in this study is available at https://doi.org/10.5281/zenodo.10907387.

References

  1. Ahmed, M.M.Z., El-Sayed Seleman, M.M., Fydrych, D., Çam, G.: Friction stir welding of aluminum in the aerospace industry: the current progress and state-of-the-art review. Materials 16, 2971 (2023)

    Article  Google Scholar 

  2. Akbari, M., Asadi, P., Sadowski, T.: A review on friction stir welding/processing: numerical modeling. Materials 16, 5890 (2023)

    Article  Google Scholar 

  3. Ajay,Singh, H., Parveen, AlMangour, B. (Eds.). Handbook of Smart Manufacturing: Forecasting the Future of Industry 4.0 (1st ed.). CRC Press. (2023) https://doi.org/10.1201/9781003333760

  4. Kumar, A., Shrivastava, V.K., Kumar, P., Kumar, A., Gulati, V.: Predictive and experimental analysis of forces in die-less forming using artificial intelligence techniques. Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng. (2024). https://doi.org/10.1177/09544089241235473

    Article  Google Scholar 

  5. Rani, S., Tripathi, K., Kumar, A.: Machine learning aided malware detection for secure and smart manufacturing: a comprehensive analysis of the state of the art. Int. J. Interact. Des. Manuf. (2023). https://doi.org/10.1007/s12008-023-01578-0

    Article  Google Scholar 

  6. Maheshwari, S., Kar, A., Alam, Z., Kumar, L.: Deep neural network-based approach for modeling, predicting, and validating weld quality and mechanical properties of friction stir welded dissimilar materials. JOM 75, 4562–4578 (2023)

    Article  Google Scholar 

  7. Matitopanum, S., Luesak, P., Chiaranai, S., Pitakaso, R., Srichok, T., Sirirak, W., Jirasirilerd, G.: A predictive model for weld properties in AA-7075-FSW: a heterogeneous AMIS-ensemble machine learning approach. Intell. Syst. Appl. (2023). https://doi.org/10.1016/j.iswa.2023.200259

    Article  Google Scholar 

  8. Dorbane, A., Harrou, F., Sun, Y.: A tree-driven ensemble learning approach to predict FS welded Al-6061-T6 material behavior, In: 2022 7th International Conference on Frontiers of Signal Processing (ICFSP), Paris (2022)

  9. Koch, J., Choi, W., King, E., Garcia, D., Das, H., Wang, T., Ross, K., Kappagantula, K.: Neural lumped parameter differential equations with application in friction-stir processing. J. Intell. Manuf.Intell. Manuf. (2024). https://doi.org/10.1007/s10845-023-02271-5

    Article  Google Scholar 

  10. Cao, X., Fraser, K., Song, Z., Drummond, C., Huang, H.: Machine learning and reduced order computation of a friction stir welding model. J. Comput. Phys.Comput. Phys. (2022). https://doi.org/10.1016/j.jcp.2021.110863

    Article  Google Scholar 

  11. Asmael, M., Nasir, T., Zeeshan, Q., Safaei, B., Kalaf, O., Motallebzadeh, A., Hussain, G.: Prediction of properties of friction stir spot welded joints of AA7075-T651/Ti-6Al-4V alloy using machine learning algorithms, Arch. Civil Mech. Eng., 22 (2022)

  12. Kraiklang, R., Chueadee, C., Jirasirilerd, G., Sirirak, W., Gonwirat, S.: A Multiple Response Prediction Model for Dissimilar AA-5083 and AA-6061 Friction Stir Welding Using a Combination of AMIS and Machine Learning, Computation 11, (2023)

  13. Wang, X., Ji, X., He, B., Wang, D., Li, C., Liu, Y., Guan, W., Cui, L.: Prediction of M-A constituents and impact toughness in stir zone of X80 Pipeline Steel Friction Stir Welds. Acta Metallurgica Sinica (English Letters) 36, 573–585 (2023)

    Article  Google Scholar 

  14. Upender, K., Kumar, B. V. R. R., Rao, M. S. S., Ramana, M. V.: Friction Stir Welding of IS:65032 Aluminum Alloy and Predicting Tensile Strength Using Ensemble Learning, Lecture Notes in Mechanical Engineering, 103–114 (2022)

  15. Mishra, A., Morisetty, R.: Determination of the ultimate tensile strength (UTS) of friction stir welded similar AA6061 joints by using supervised machine learning based algorithms. Manuf. Lett. 32, 83–86 (2022)

    Article  Google Scholar 

  16. Eren, B., Demir, M.H., Mistikoglu, S.: Recent developments in computer vision and artificial intelligence aided intelligent robotic welding applications. Int. J. Adv. Manuf. Technol. 126(11), 476 (2023)

    Google Scholar 

  17. Yadav, M.K., Arora, K., Kumar, S., Kumar, A.: Micro-hardness evaluation of the bobbin tool-friction stir welded AA6063 using regression-based machine learning. Mater. Lett. 349, 134751 (2023)

    Article  Google Scholar 

  18. Verma, S., Msomi, V., Mabuwa, S., Merdji, A., Misra, J.P., Batra, U., Sharma, S.: Machine learning application for evaluating the friction stir processing behavior of dissimilar aluminium alloys joint. Proc. Inst. Mech. Eng., Part L: J. Mater.: Design Appl. 236, 633–646 (2022)

    Google Scholar 

  19. Kumar, A.K., Surya, M.S., Venkataramaiah, P.: Performance evaluation of machine learning based-classifiers in friction stir welding of Aa6061-T6 alloy. Int. J. Interact. Des. Manuf. 17, 469–472 (2023)

    Article  Google Scholar 

  20. Mishra, A., Dasgupta, A.: Supervised and unsupervised machine learning algorithms for forecasting the fracture location in dissimilar friction-stir-welded joints. Forecasting 4, 787–797 (2022)

    Article  Google Scholar 

  21. Ye, X., Su, Z., Dahari, M., Su, Y., Alsulami, S.H., Aldhabani, M.S., Abed, A.M., Ali, H.E., Bouzgarrou, S.M.: Hybrid modeling of mechanical properties and hardness of aluminum alloy 5083 and C100 Copper with various machine learning algorithms in friction stir welding. Structures 55, 1250–1261 (2023)

    Article  Google Scholar 

  22. Asmael, M., Kalaf, O., Safaei, B., Nasir, T., Sahmani, S., Zeeshan, Q.: Assessment of friction stir spot welding of AA5052 joints via machine learning, Acta Mechanica, (2024)

  23. Guan, W., Cui, L., Liang, H., Wang, D., Huang, Y., Li, M., Li, X.: The response of force characteristic to weld-forming process in friction stir welding assisted by machine learning, Int. J. Mech. Sci. 253 (2023)

  24. Das, B., Ramon, J.: Machine Learning and Real-Time Signal Features Integration for Strength Modelling in Friction Stir Welding Process, Lecture Notes in Mechanical Engineering, 193–202 (2022)

  25. Radhakrishna, L., Hariharan, V. S., Srinivas, B., Venkateswarlu, G., Sefene, E. M., Mishra, A., Gopikrishna, N., Rajanikanth, T.: Performance Evaluation of ML-Based Algorithm and Taguchi Algorithm of the Hardness Value of the Friction Stir Welded AA6262 Joints at a Nugget Joint (2023)

  26. Sandeep, R., Natarajan, A.: Application of machine learning approaches to predict joint strength of friction stir welded aluminium alloy 7475 and PPS polymer hybrid joint. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 236, 9003–9011 (2022)

    Article  Google Scholar 

  27. Saravanan, K., Giridharan, A.: Machine learning for parametrical analysis of friction stir welded aluminum metal matrix composites. Annals of “Dunarea de Jos” University of Galati Fascicle XII, Welding Equipment and Technology 33, 59–74 (2022)

    Article  Google Scholar 

  28. Xue, F., He, D., Zhou, H.: Effect of ultrasonic vibration in friction stir welding of 2219 aluminum alloy: an effective model for predicting weld strength. Metals 12, 7–1101 (2022)

    Article  Google Scholar 

  29. Patil, S., Mallick, A., Setti, S. G.: Hardness Prediction of Friction-Stir Processed Copper Composites Using Machine Learning Techniques, In: 2023 2nd International Conference on Computational Modelling, Simulation and Optimization (ICCMSO), Bali, (2023)

  30. Sundar Singh Sivam, S. P., Balasubramanian, S., Gurumani, A., Kesavan, S.: Prediction of friction stir welding in aluminium 6061 – T6 using ANN (2022)

  31. Chadha, U., Selvaraj, S.K., Gunreddy, N., Sanjay Babu, S., Mishra, S., Padala, D., Shashank, M., Mathew, R.M., Kishore, S.R., Panigrahi, S., Nagalakshmi, R., Kumar, R.L., Adefris, A.: A survey of machine learning in friction stir welding including unresolved issues and future research directions. Mater. Design Process. Commun. 2022, 1–28 (2022)

    Article  Google Scholar 

  32. Patil, S., Nagamadhu, M., Malyadri, T.: A critical review on microstructure and hardness of aluminum alloy 6061 joints obtained by friction stir welding-past, present, and its prospects. Materials Today: Proceedings 82, 75–78 (2023)

    Google Scholar 

  33. Shaikh, A., Shinde, S., Rondhe, M., Chinchanikar, S.: Machine learning techniques for smart manufacturing: a comprehensive review. Lecture Notes Mech. Eng. (2023). https://doi.org/10.1007/978-981-19-0561-2_12

    Article  Google Scholar 

  34. Prabhakar, D.A.P., Korgal, A., Shettigar, A.K., Herbert, M.A., Chandrashekharappa, M.P.G., Pimenov, D.Y., Giasin, K.: A review of optimization and measurement techniques of the friction stir welding (FSW) process. J. Manuf. Mate. Process. 7(5), 181 (2023)

    Google Scholar 

  35. Johnson, N.N., Madhavadas, V., Asati, B., Giri, A., Hanumant, S.A., Shajan, N., Arora, K.S., Selvaraj, S.K.: Implementation of machine learning algorithms for weld quality prediction and optimization in resistance spot welding. J. Mater. Eng. Perform. (2023). https://doi.org/10.1007/s11665-023-08503-2

    Article  Google Scholar 

  36. Gbagba, S., Maccioni, L., Concli, F.: Advances in machine learning techniques used in fatigue life prediction of welded structures. Appl. Sci. 14, 398 (2023)

    Article  Google Scholar 

  37. Montgomery, D.C., Peck, E.A., Vining, G.G.: Introduction to linear regression analysis. John Wiley & Sons, New York (2021)

    Google Scholar 

  38. Jain, P., Choudhury, A., Dutta, P., Kalita, K., Barsocchi, P., others: Random forest regression-based machine learning model for accurate estimation of fluid flow in curved pipes, Processes, 9:2095, (2021)

  39. Kumar, A., Kumar, D., Kumar, P., Dhawan, V.: Optimization of incremental sheet forming process using artificial intelligence-based techniques. In: Nature-Inspired Optimization in Advanced Manufacturing Processes and Systems (pp. 113–130). CRC Press. (2020)

  40. Shanmugasundar, G., Vanitha, M., Čep, R., Kumar, V., Kalita, K., Ramachandran, M.: A comparative study of linear, random forest and adaboost regressions for modeling non-traditional machining. Processes 9, 2015 (2021)

    Article  Google Scholar 

  41. Dey, K., Kalita, K., Chakraborty, S.: A comparative analysis on metamodel-based predictive modeling of electrical discharge machining processes. Int. J. Interactive Design Manuf. (IJIDeM) 17, 385–406 (2023)

    Article  Google Scholar 

  42. Kalita, K., Ganesh, N., Jayalakshmi, S., Chohan, J.S., Mallik, S., Qin, H.: Multi-Objective artificial bee colony optimized hybrid deep belief network and XGBoost algorithm for heart disease prediction. Frontiers in Digital Health 5, 1279644 (2023)

    Article  Google Scholar 

  43. Shaik, K., Ramesh, J.V.N., Mahdal, M., Rahman, M.Z.U., Khasim, S., Kalita, K.: Big data analytics framework using squirrel search optimized gradient boosted decision tree for heart disease diagnosis. Appl. Sci. 13, 5236 (2023)

    Article  Google Scholar 

  44. Gayathri, R., Rani, S.U., Čepová, L., Rajesh, M., Kalita, K.: A comparative analysis of machine learning models in prediction of mortar compressive strength. Processes 10, 1387 (2022)

    Article  Google Scholar 

  45. Ganesh, N., Balamurugan, M., Chohan, J.S., Kalita, K.: Development of a grey wolf optimized-gradient boosted decision tree metamodel for heart disease prediction. Int. J. Intell. Syst. Appl. Eng. 12, 515–522 (2024)

    Google Scholar 

  46. Kalita, K., Burande, D., Ghadai, R.K., Chakraborty, S.: Finite element modelling, predictive modelling and optimization of metal inert gas, tungsten inert gas and friction stir welding processes: a comprehensive review. Arch. Comput. Methods Eng. 30, 271–299 (2023)

    Article  Google Scholar 

Download references

Funding

There is no funding provided by any Institutions/organizations/funding agencies for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burande, D.V., Kalita, K., Gupta, R. et al. Machine learning metamodels for thermo-mechanical analysis of friction stir welding. Int J Interact Des Manuf (2024). https://doi.org/10.1007/s12008-024-01871-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-024-01871-6

Keywords

Navigation