Skip to main content
Log in

Design of CCM boost converter using fractional-order PID and self-tuning schems for power factor correction

  • Original Article
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The primary determining elements for the effective operation of power electronic converters are Power Quality (PQ) in terms of power factor, Total harmonic distortion (THD), and ideal output regulation. In this study, the uncontrolled diode bridge rectifier draws pulsed input current, which can be managed with an easy and efficient active wave-shaping control system, bringing the power factor closer to unity and meeting the THD parameters. It controls the generated voltage as well. A robust adaptive controller is selected for this work with stability ensurance and significant robustness against ditusrbances, particularly noisy cases. The controller structure consists of an Inner loop and an outer control loop. In the inner loop, the Self-Tuning Regulator controller is used because the Inductor current varies with time. A Fractional-Order Proportional-Integral-Derivative controller is used for the outer loop. The parameters of this controller are optimized by the Ant Lion optimizer algorithm. The suggested plan uses a cascade controller providing adequate operation and results for upholding PQ. The controller designed in this work has stable and robust performance against noise, uncertainty, and other factors. These findings confirm the co-design techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors do not have permissions to share data.

References

  1. Farhadi, A., Mohammadi, S., Hosseini, S. A., Shahbazi, M. M., Moradi, M. H.: Power Factor correction of parallel-connected boost converter utilizing a fuzzy logic-based controller. In: 2023 8th International Conference on Technology and Energy Management (ICTEM). IEEE, pp. 1–6. (2023)

  2. Mollaee, H., Ghamari, S.M., Saadat, S.A., Wheeler, P.: A novel adaptive cascade controller design on a buck–boost DC–DC converter with a fractional-order PID voltage controller and a self-tuning regulator adaptive current controller. IET Power Electron. 14(11), 1920–1935 (2021)

    Article  Google Scholar 

  3. Roosta, V., Ghamari, S.M., Mollaee, H., Zarif, M.H.: A novel adaptive neuro linear quadratic regulator (ANLQR) controller design on DC-DC buck converter. IET Renew. Power Gener. 17(5), 1242–1254 (2023)

    Article  Google Scholar 

  4. Saadat, S.A., Ghamari, S.M., Mollaee, H.: Adaptive backstepping controller design on Buck converter with a novel improved identification method. IET Control Theory Appl. 16(5), 485–495 (2022)

    Article  Google Scholar 

  5. Ghamari, S.M., Khavari, F., Mollaee, H.: Lyapunov-based adaptive PID controller design for buck converter. Soft Comput. 27(9), 5741–5750 (2023)

    Article  Google Scholar 

  6. Pereira, D.D.C., Da Silva, M.R., Silva, E.M., Tofoli, F.L.: Comprehensive review of high power factor ac-dc boost converters for PFC applications. Int. J. Electron. 102(8), 1361–1381 (2015)

    Article  Google Scholar 

  7. Li, H., Li, S., Xiao, W.: Star power factor correction architecture. IEEE Trans. Power Electron. 38(3), 3531–3545 (2022)

    Article  Google Scholar 

  8. Chiang, H., Lin, F., Chang, J., Chen, K., Chen, Y., Liu, K.: Control method for improving the response of single-phase continuous conduction mode boost power factor correction converter. IET Power Electron. 9(9), 1792–1800 (2016)

    Article  Google Scholar 

  9. Ghamari, S.M., Mollaee, H., Khavari, F.: Robust self-tuning regressive adaptive controller design for a DC–DC BUCK converter. Measurement 174, 109071 (2021)

    Article  Google Scholar 

  10. Kessal, A., Rahmani, L.: Ga-optimized parameters of sliding-mode controller based on both output voltage and input current with an application in the PFC of AC/DC converters. IEEE Trans. Power Electron. 29(6), 3159–3165 (2013)

    Article  Google Scholar 

  11. Ortiz-Castrillón, J.R., Mejía-Ruíz, G.E., Muñoz-Galeano, N., López-Lezama, J.M., Saldarriaga-Zuluaga, S.D.: PFC single-phase AC/DC Boost converters: bridge, semi-bridgeless, and bridgeless topologies. Applied Sciences 11(16), 7651 (2021)

    Article  Google Scholar 

  12. Commission I. E.: Electromagnetic compatibility (EMC)—Part 3-2: limits—limits for harmonic current emissions (equipment input current≤ 16 a per phase). In: IEC Stand, pp. 1000–1003. (2018)

  13. Mollaee, H., Ghamari, S.M., Khavari, F.: Self-tuning regulator adaptive controller design for DC-DC boost converter with a novel robust improved identification method. IET Power Electron. 15(13), 1365–1379 (2022)

    Article  Google Scholar 

  14. Kamalapathi, K., et al.: A hybrid moth-flame fuzzy logic controller based integrated cuk converter fed brushless DC motor for power factor correction. Electronics (Basel) 7(11), 288 (2018)

    Google Scholar 

  15. Ghamari, S.M., Gholizade-Narm, H., Khavari, F.: Design of a robust adaptive self-tuning regulator controller on single-phase full-bridge grid-connected inverter. Int. J. Dyn. Control 11(2), 783–796 (2023)

    Article  Google Scholar 

  16. González-Castaño, C., Restrepo, C., Sanz, F., Chub, A., Giral, R.: Dc voltage sensorless predictive control of a high-efficiency pfc single-phase rectifier based on the versatile buck-boost converter. Sensors 21(15), 5107 (2021)

    Article  Google Scholar 

  17. Khavari, F., Ghamari, S.M., Abdollahzadeh, M., Mollaee, H.: Design of a novel robust type-2 fuzzy-based adaptive backstepping controller optimized with antlion algorithm for buck converter. IET Control Theory Appl. (2023). https://doi.org/10.1049/cth2.12445

    Article  MathSciNet  Google Scholar 

  18. Zhou, Y., Wang, B.: PWM-quasi-sliding mode control for APFC converters. Electr. Eng. 92, 43–48 (2010)

    Article  Google Scholar 

  19. Ghamari, S.M., Narm, H.G., Mollaee, H.: Fractional-order fuzzy PID controller design on buck converter with antlion optimization algorithm. IET Control Theory Appl. 16(3), 340–352 (2022)

    Article  Google Scholar 

  20. Abdollahzadeh, M., Mollaee, H., Ghamari, S.M., Khavari, F.: Design of a novel robust adaptive neural network-based fractional-order proportional-integrated-derivative controller on DC/DC Boost converter. J. Eng. 2023(4), e12255 (2023)

    Google Scholar 

  21. Saadat, S.A., Ghamari, S.M., Mollaee, H., Khavari, F.: Adaptive neuro-fuzzy inference systems (ANFIS) controller design on single-phase full-bridge inverter with a cascade fractional-order PID voltage controller. IET Power Electron. 14(11), 1960–1972 (2021)

    Article  Google Scholar 

  22. Ghamari, S.M., Khavari, F., Mollaee, H.: Adaptive backstepping controller design for DC/DC buck converter optimised by grey wolf algorithm. IET Energy Syst. Integr. (2023). https://doi.org/10.1049/tje2.12244

    Article  Google Scholar 

  23. Bosque-Moncusi, J.M., Valderrama-Blavi, H., Flores-Bahamonde, F., Vidal-Idiarte, E., Martínez-Salamero, L.: Using low-cost microcontrollers to implement variable hysteresis-width comparators for switching power converters. IET Power Electron. 11(5), 787–795 (2018)

    Article  Google Scholar 

  24. Memeghani, M.J., Ghamari, S.M., Jouybari, T.Y., Mollaee, H., Wheeler, P.: Generalised predictive controller (GPC) design on single-phase full-bridge inverter with a novel identification method. IET Control Theory Appl. 17(3), 284–294 (2023)

    Article  MathSciNet  Google Scholar 

  25. Marcos-Pastor, A., Vidal-Idiarte, E., Cid-Pastor, A., Martinez-Salamero, L.: Interleaved digital power factor correction based on the sliding-mode approach. IEEE Trans. Power Electron. 31(6), 4641–4653 (2015)

    Article  Google Scholar 

  26. Langella, R., Testa, A., Alii, E.: IEEE recommended practice and requirements for harmonic control in electric power systems. In: IEEE Recommended Practice, IEEE. (2014)

  27. Wu, S.-T., Chen, F.-Y., Chien, M.-C., Wang, J.-M., Su, Y.-Y.: A hybrid control scheme with fast transient and low harmonic for boost PFC converter. Electronics (Basel) 10(15), 1848 (2021)

    Google Scholar 

  28. Ghamari, S.M., Mollaee, H., Khavari, F.: Design of robust self-tuning regulator adaptive controller on single-phase full-bridge inverter. IET Power Electron. 13(16), 3613–3626 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y. Design of CCM boost converter using fractional-order PID and self-tuning schems for power factor correction. Int J Interact Des Manuf (2024). https://doi.org/10.1007/s12008-024-01855-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-024-01855-6

Keywords

Navigation