Skip to main content

Advertisement

Log in

Variable Duty Cycle Control with PSO-PI Controller for Power Factor Correction and Fast Regulation

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

AC–DC converter which requires power factor correction (PFC) at the input side mostly uses boost-type topology as a PFC converter between bridge rectifier and load. Due to the inherent nature of the boost topology, momentary behavior of the AC–DC converter which uses boost topology is unsatisfactory. This paper presents proportional integral controller tuned by particle swarm optimization along with variable duty cycle control for PFC as well as fast regulation under transient conditions in an AC–DC converter. The state-space average approach is applied for modeling the converter from which the converter’s transfer function is derived. The duty ratio is calculated at each instant using converter parameters to make the power factor unity and achieve better transient performance. This duty cycle is correlated with sawtooth waveform (whose frequency is a switching frequency) to generate PWM pulses. Simulation is done using MATLAB/Simulink software. Spartan 6 FPGA kit with switching frequency 500 KHz is used for hardware implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Singh, G. Bhim Singh, V.B. Bhuvaneswari, Improved power quality switched mode power supply using buck-boost converter. IEEE Trans. Ind. Appl. 52(6), 5194–5202 (2016)

    Article  Google Scholar 

  2. W. Edward Reid, Power quality issues- standards and guidelines. IEEE Trans. Ind. Appl. 32(3), 625–632 (1996)

    Article  Google Scholar 

  3. A. Dheepanchakkravarthy, M.R. Jawahar, K. Venkatraman, M.P. Selvan, S. Moorthi, Performance evaluation of FPGA based predictive current controller for four-leg DSTATCOM in electric distribution system. IET Gen. Transm. Distrib. 13(19), 4400–4409 (2019)

    Article  Google Scholar 

  4. S. Khan, B. Singh, P. Makhija, A review on power quality problems and its improvement techniques, in Proceedings of International Conference on Innovations in Power and Advanced Computing Technologies, pp.1–7 (2017)

  5. V.K. Kannan, T. Chandrasekar, B. Justus Rabi, A review of power quality standards, electrical software tools, issues and solutions, in Proceedings of International Conference on Renewable Energy and Sustainable Energy, pp. 91–97 (2013)

  6. W. Kuiyuan,The comparison and choice of several power factor correction methods, in Proceedings of IEEE Vehicle Power and Propulsion Conference, pp. 1–5 (2007)

  7. S.A. Azazi, S. Mahmoud, Review of passive and active circuits for PF correction in single phase, low power AC-DC converters, in International Middle East Power Systems Conference (MEPCON’10), pp. 217–224 (2010)

  8. S.A. Gorji, H.G. Sahebi, M. Ektesabi, A. Rad, Topologies and Control Schemes of dc-dc power converter: An Overview. IEEE Access 7, 117997–118019 (2019)

    Article  Google Scholar 

  9. H. Wei, I.Batarseh, Comparison of basic converter topologies For PF correction, in IEEE conference on Engineering for a New Era, pp. 349–353 (2002)

  10. K.V.G. Raghavendra, M. Zeb, T.N.V. Krishna, S.V.S.V.P. Kumar, D.H. Kim, M.S. Kim, H.G. Cho, H.J. Kim, A Compre: review of DC–DC converter topologies and modulation strategies with recent advances in solar PV system. Electronics 9(1), 1–42 (2020)

    Google Scholar 

  11. B.M. Hasaneen, A. Elbaset Mohammed, Design and simulation of DC/DC boost converter, in Proceedings of the International Middle-East Power System Conference, pp. 335–340 (2008)

  12. A. Leon-Masich, H. Valderrama-Blavi, J.M. Bosque-Moncusí, L. Martínez-Salamero, A high-voltage SiC-based boost PFC for LED applications. IEEE Trans. Power Electron. 31(2), 1633–1642 (2016)

    Article  Google Scholar 

  13. S. Buso, L. Rossetto, G. Spiazzi, P. Mattavelli, Simple digital control improving dynamic performance of power factor pre-regulators. IEEE Trans. Power Electron. 13(5), 814–823 (1998)

    Article  Google Scholar 

  14. J. Zhou, Z. Qian, Novel sampling algorithm for DSP controlled 2KW PFC converter. IEEE Trans. Power Electron. 16(2), 217–222 (2001)

    Article  Google Scholar 

  15. B. Singh, S. Pal, A. Srivastava, A universal input PFC CSC converter in low power consumer lighting applications. IETE Tech. Rev. 37(4), 410–417 (2019)

    Article  Google Scholar 

  16. S. Bibian, H. Jin, High performance predictive dead-beat digital controller for DC power supplies. IEEE Trans. Power Electron. 17(3), 420–427 (2002)

    Article  Google Scholar 

  17. F. López, V.M. López-Martín, F.J. Azcondo, L. Corradini, A. Pigazo, Current-sensor less power factor correction with predictive controllers. IEEE J. Emerg. Sel. Top. Power Electron. 7(2), 891–900 (2019)

    Article  Google Scholar 

  18. Y. Zhang, Y. Zhang, X. Wang, Study on predictive dead-beat peak, valley and average current control algorithms for phase shifted full bridge DC–DC converters. J. Power Electron. 20, 87–99 (2020)

    Article  Google Scholar 

  19. P. Chen, Erickson, and Maksimovic, Predictive digital current programmed control, IEEE Transactions on power. Electronics 18(1), 411–419 (2003)

    Google Scholar 

  20. Y. Tingcun, L. Feng, C. Nan, J. Wang, Digitally current controlled DC-DC switching converters using an adjacent cycle sampling strategy. J. Power Electron. 16(1), 227–237 (2016)

    Article  Google Scholar 

  21. W. Zhang, Y.-F. Liu, W. Bin, New duty ratio control strategy for PFC and FPGA implementation. IEEE Trans. Power Electron. 21(6), 1745–1753 (2006)

    Article  Google Scholar 

  22. P. Elangovan, N.K. Mohanty, PI controlled active front end superlift converter with ripple free DC-link for three phase IM drives. J. Power Electron. 16(1), 190–204 (2016)

    Article  Google Scholar 

  23. A. Kessal, L. Rahmani, J.-P. Gaubert, M. Mostefai, Power factor corrector with a fast regulation and constant switching frequency. Arab. J. Sci. Eng. 38, 651–659 (2012)

    Article  Google Scholar 

  24. S. Durgadevi, M.G. Umamaheswari, Analysis and design of single phase PFC with dc/dc SEPIC Converter for fast response using GA optimized PI controller. IET Circuits Devices Syst. 12(2), 164–174 (2017)

    Article  Google Scholar 

  25. F. Tahri, A. Tahri, A. Allali, S. Flazi, The digital self tuning control of step down DC-DC converter. Acta Polytechnica Hungarica 9(6), 49–64 (2012)

    Google Scholar 

  26. K.R. Kumar, S. Jeevannantham, Design and implementation of reduced-order sliding mode controller plus proportional double integral controller for negative output elementary super-lift Luo-converter. IET Power Electron. 6(5), 974–989 (2013)

    Article  Google Scholar 

  27. S. Durgadevi, M.G. Umamaheswari, Design of gray wolf optimizer algorithm-based fractional order PI controller for power factor correction in SMPS applications. IEEE Trans. Power Electron. 35(2), 2100–2118 (2019)

    Google Scholar 

  28. P. Azer, A. Emadi, Generalized State Space Average Model for Multi-Phase Interleaved Buck, Boost and Buck-Boost DC-DC Converters: Transient, Steady-State and Switching Dynamics, IEEE. Access 8, 77735–77745 (2020)

    Article  Google Scholar 

  29. G. Herbst, A building-block approach to state-space modeling of DC–DC converter systems. J (Multidiscip. Sci. J.) 2, 247–267 (2019)

    Google Scholar 

  30. M.M. Garg, Y.V. Hote, Leverrier algorithm based reduced order modeling of dc-dc converters, in Proceedings of the International Conference Power Electronics, pp. 1–6 (2015)

  31. M.B. D’Amico, S.A. González, Modelling and dynamical analysis of a DC–DC converter with coupled inductors. Electr. Eng. 101, 67–80 (2019)

  32. J.J. Babu, V. Thirumavalavan, Switched-mode Luo converter with power factor correction and fast regulation under transient conditions. Soft Comput. 24, 13319–13329 (2020)

    Article  Google Scholar 

  33. O. Turksoy, U. Yilmaz, A. Teke (2021) Efficient AC–DC power factor corrected boost converter design for battery charger in electric vehicles. Energy 221: 119765

  34. B. Bhattacharyya, S. Raj, PSO based bio inspired algorithms for reactive power planning. Int. J. Electr. Power Energy Syst. 74, 396–402 (2016)

    Article  Google Scholar 

  35. S. Mahapatra, M. Badi, S. Raj, Implementation of PSO, it’s variants and Hybrid GWO-PSO for improving Reactive Power Planning, in Proceedings of Global Conference for Advancement in Technology (GCAT), pp. 1–6 (2019)

  36. C. Amarendra, K.H. Reddy, Performance analysis intelligent-based advanced PSO algorithm and testing of real-time matrix converter electrical system. Soft Comput. 24, 14209–14220 (2020)

    Article  Google Scholar 

  37. Z. Zhou, F. Li, J.H. Abawajy, C. Gao, Improved PSO Algorithm Integrated With Opposition-Based Learning and Tentative Perception in Networked Data Centres. IEEE Access 8, 55872–55880 (2020)

    Article  Google Scholar 

  38. P.A. Digehsara, S.N. Chegini, A. Bagheri, M.P. Roknsaraei, An improved particle swarm optimization based on the reinforcement of the population initialization phase by scrambled Halton sequence. Cogent Eng. 7(1), Article id. 1737383 (2020)

  39. B.V. Sreenivasappa, R.Y. Udaykumar, Analysis and implementation of discrete time PID controllers using FPGA. Int. J. Electr. Comput. Eng. 2(1), 71–82 (2010)

    Google Scholar 

  40. S. Mukhopadhyay, A. Patra, G.P. Rao, New class of discrete-time models for continuous-time systems. Int. J. Control 55(5), 1161–1187 (2007)

    Article  MathSciNet  Google Scholar 

  41. R.P. Borase, D.K. Maghade, S.Y. Sondkar, A review of PID control, tuning methods and applications. Int. J. Dyn. Control (2020). https://doi.org/10.1007/s40435-020-00665-4

    Article  Google Scholar 

  42. J.W. Perng, S.C. Hsieh, Design of digital PID control systems based on sensitivity analysis and genetic algorithms. Int. J. Control Autom. Syst. 17, 1838–1846 (2019)

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jambulingam Jawahar Babu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, J.J., Thirumavalavan, V. Variable Duty Cycle Control with PSO-PI Controller for Power Factor Correction and Fast Regulation. J. Inst. Eng. India Ser. B 103, 961–969 (2022). https://doi.org/10.1007/s40031-021-00674-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-021-00674-7

Keywords

Navigation