Skip to main content
Log in

Evaluating the effects of multiple hole profiles on gas turbine blade cooling rate: a computational study

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The Gas turbines blade design and its modifications is a most crucial components towardsits sustainability against high temperature. The effective application of different cooling techniques enhances the heat transfer rate of these blades.The advent of modern manufacturing techniquesisnow days found more convenient in creation of micro cooling passages on the turbine blades. The profile variation of these micro cooling passages effects the heat transfer process. In this paper, a numerical study of convection cooling technique with different hole profile is performed for gas turbine blades using Computational technique. The square, triangular, and semi-circular hole profiles have been used to study its effect on the cooling efficiency.The effect of increasing the number of holes at different blade areas is also reported in this investigation.Adiabatic film cooling efficiency and heat transfer characteristics were observed using numerical analysis. The area near the trailing edge and on pressure and suction side edges are identified for the effect on overall heat transfer. A square hole with 11 number of holes has found higher Adiabatic film cooling efficiency (ηad = 0.46) while the square hole with 17 number of holes found to be highest Adiabatic film cooling efficiency (ηad) = 0.487 for 1400°Ctemperature.The computational analysis using CFD and ANSYS has registered the decrease in surface temperature of the blades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Han, J.C., Rallabandi, A.P.: Turbine blade film cooling using PSP technique. Front. Heat Mass Transf. (2010). https://doi.org/10.5098/hmt.v1.1.3001

    Article  Google Scholar 

  2. Kim, K.M., Park, J.S., Lee, D.H., Lee, T.W., Cho, H.H.: Analysis of conjugated heat transfer, stress and failure in a gas turbine blade with circular cooling passages. Eng. Fail. Anal. 18(4), 1212–1222 (2011). https://doi.org/10.1016/j.engfailanal.2011.03.002

    Article  Google Scholar 

  3. Yelamasetti, B., Manikyam, S., Kumar, R., Saxena, K.K.: Finite element simulation for predicting temperature and residual stresses distribution developed in dissimilar welds of Monel 400 and AISI 309L. Adv. Mater. Process. Technol. 8(5), 1–11 (2022). https://doi.org/10.1080/2374068X.2021.1948702

    Article  Google Scholar 

  4. Bunker, R.S.: A review of shaped hole turbine film-cooling technology. J. Heat Transf. 127(4), 441–453 (2005). https://doi.org/10.1115/1.1860562

    Article  Google Scholar 

  5. Bogard, D.G., Thole, K.A.: Gas turbine film cooling. J. Propuls. Power 22(2), 249–270 (2006). https://doi.org/10.2514/1.18034

    Article  Google Scholar 

  6. Li, Z.Y., Wei, X.T., Guo, Y.B., Sealy, M.P.: State-Of-Art, challenges, and outlook on manufacturing of cooling holes for turbine blades. Mach. Sci. Technol. 19(3), 361–399 (2015). https://doi.org/10.1080/10910344.2015.1051543

    Article  Google Scholar 

  7. Tucker, R., Khatamifar, M., Lin, W., McDonald, K.: Experimental investigation of orientation and geometry effect on additive manufactured aluminium LED heat sinks under natural convection. Therm. Sci. Eng. Prog. 23, 100918 (2021). https://doi.org/10.1016/j.tsep.2021.100918

    Article  Google Scholar 

  8. Krishna Anand, V.G., Parammasivam, K.M.: Thermal barrier coated surface modifications for gas turbine film cooling: a review. J. Thermal Anal. Calorim. 146(2), 545–580 (2021). https://doi.org/10.1007/s10973-020-10032-2

    Article  Google Scholar 

  9. Pattavanitch, J., Hinduja, S.: Machining of turbulated cooling channel holes in turbine blades. CIRP Ann. Manuf. Technol. 61(1), 199–202 (2012). https://doi.org/10.1016/j.cirp.2012.03.086

    Article  Google Scholar 

  10. Biryuk, V., Gorshkalev, A.A., Lukachev, S.V., Tsybizov, Yu.I.: Multinozzle combustion chamber of aviation gas turbine engines as a basis of environmental safety. Review. Int. J. Energy Clean Environ. 17(2–4), 279–294 (2016). https://doi.org/10.1615/InterJEnerCleanEnv.2017019410

    Article  Google Scholar 

  11. Zhu, X., Zhang, J., Tan, X.: Numerical assessment of round-to-slot film cooling performances on a turbine blade under engine representative conditions. Int. Commun. Heat Mass Transf. 100, 98–110 (2019). https://doi.org/10.1016/j.icheatmasstransfer.2018.12.008

    Article  Google Scholar 

  12. Li, W., Li, X., Ren, J., Jiang, H.: Experimental investigation of wall thickness and hole shape variation effects on full-coverage film cooling performance for a gas turbine vane. Appl. Therm. Eng. 144(August), 349–361 (2018). https://doi.org/10.1016/j.applthermaleng.2018.08.068

    Article  Google Scholar 

  13. Li, H.W., Han, F., Ma, Y.W., Wang, H.C., Zhou, Z.Y., Tao, Z.: Experimental investigation on the effects of rotation and the blowing ratio on the leading-edge film cooling of a twist turbine blade. Int. J. Heat Mass Transf. 129, 47–58 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.005

    Article  Google Scholar 

  14. Tapse, S., Deshmukh, A., Bhosale, R., Gadhave, S., Naidu, M.J.: Effect of branched film cooling holes on creep life of gas turbine blade using larson miller parameter.

  15. Narsingrao, J.: Cfd analysis of gas turbine blade cooling with staggered holes. 8(1), 756–765.

  16. Kini, C.R., Satish, S.B., Sharma, N.Y.: A computational conjugate thermal analysis of HP stage turbine blade cooling with innovative cooling passage geometries. Proc. World Congr. Eng. 3, 2168–2173 (2011)

    Google Scholar 

  17. Deepanraj, B., Lawrence, P., Sankaranarayanan, G.: Theoretical analysis of gas turbine blade by finite element method. Sci. World 9(9), 29–33 (1970). https://doi.org/10.3126/sw.v9i9.5514

    Article  Google Scholar 

  18. Lee, D.H., Kim, K.M., Shin, S., Cho, H.H.: Thermal analysis in a film cooling hole with thermal barrier coating. J. Thermophys. Heat Transf. 23(4), 843–846 (2009). https://doi.org/10.2514/1.41341

    Article  Google Scholar 

  19. Nourin, F.N., Salem, A.R., Amano, R.S.: Investigation of jet impingement cooling for gas turbine blade with in-line and staggered nozzle arrays. Int. J. Energy Clean Environ. 21(2), 169–182 (2020)

    Article  Google Scholar 

  20. Gavali, S., Garad, D.S., Yadav, J.N.: Review of cooling of gas turbine blades. Int. J. Appl. Eng. Res. 13(5), 43–48 (2018)

    Google Scholar 

  21. Kim, Y.J., Kim, S.M.: Influence of shaped injection holes on turbine blade leading edge film cooling. Int. J. Heat Mass Transf. 47(2), 245–256 (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2003.07.008

    Article  Google Scholar 

  22. Pawar, A., Kamble, D., Ghorpade, R.R.: Overview on electro-chemical machining of super alloys. Mater. Today Proc. 46, 696–700 (2021). https://doi.org/10.1016/j.matpr.2020.12.017

    Article  Google Scholar 

  23. Facchini, B., Magi, A., Scotti Del Greco, A.: Conjugate heat transfer simulation of a radially cooled gas turbine vane. Turbo Expo. Power Land Sea Air 41685, 951–961 (2004)

    Google Scholar 

  24. Athab, A.J., Sarada, S.N.: CFD analysis of a gas turbine blade cooling in the presence of holes. Int. J. Mag. Eng. Technol. Manag. Res. 2(8), 1637–1644 (2015)

    Google Scholar 

  25. Yao, Y., Zhang, J.Z., Wang, L.P.: Film cooling on a gas turbine blade suction side with converging slot-hole. Int. J. Therm. Sci. 65, 267–279 (2013)

    Article  Google Scholar 

  26. BalramYelamasetti, V.G., ManikyamT, S., Vardhan, V.: Thermal field and residual stress analyses of similar and dissimilar weldments joined by constant and pulsed current TIG welding techniques. Adv. Mater. Process. Technol. 8(1), 1–16 (2022). https://doi.org/10.1080/2374068X.2021.1959114

    Article  Google Scholar 

  27. Yadav, A.K., Kr, M., Agrawal, K.K., Saxena, B.Y.: Effect of GTAW process parameters on weld characteristics and microstructural studies of dissimilar welded joints of AA5083 and AA6082: optimization technique. Int. J. Interact. Des. Manuf. (2023). https://doi.org/10.1007/s12008-023-01230-x

    Article  Google Scholar 

  28. Kiran, C.H.R., Venkat Ramana, C.H., Reddy, B.N., Krishna, V.S.R.: Experimental investigation of performance and emission characteristics of diesel engine using pine oil blends. In: AIP Conference Proceedings, 2317, Art. no. 040006, (2021). https://doi.org/10.1063/5.0036484

  29. Praveen, L., Anoop, M.S.: Modeling and finite element analysis of composite propeller blade for aircraft. In: AIP Conference Proceedings, 2317, art. no. 020027. (2021). https://doi.org/10.1063/5.0036318

  30. Ashish, P., Dr. Dinesh, K., Dr. Jadhav, D.B.: Performance evaluation of different hole profiles using 2-D CFD model. In: Proceedings of 1st International Conference (RAMMML-22), ISBN 9781032441313, CRC Press. (2022)

  31. Satav, A.G., Kubade, S., Amrutkar, C., Arya, G., Pawar, A.: A state-of-the-art review on robotics in waste sorting: scope and challenges. Int. J. Interact. Des. Manuf. (IJIDeM) (2023). https://doi.org/10.1007/s12008-023-01320-w

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Pawar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 242 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, A., Kamble, D. Evaluating the effects of multiple hole profiles on gas turbine blade cooling rate: a computational study. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01418-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01418-1

Keywords

Navigation