Skip to main content

Advertisement

Log in

Exploring the application sphere of electrical discharge machining in composite materials considering surface features: a content analysis

  • Review
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The quantitative content analysis focuses on identifying and quantifying, whereas the qualitative approach focuses on analyzing and comprehending. It examines words, ideas, and concepts in both forms of writing before analyzing the results. This paper investigated the effectiveness of keywords as a metric for collecting the information and philosophy of science offered in EDM articles in composite materials considering surface roughness/finish/integrity. It consists of 440 articles published from 2000 to 2021 and collected from Scopus. The content analysis includes author and index keywords, word clouds, three field plots, a tree map of title and abstract terms, and word growth of the top keywords. Content analysis was performed with the assistance of VOSviwer and Biblioshiny. The latest trends, future roadmaps, and concluding annotations are presented at the end of the analysis. Buddy researchers working in the field may use content analysis to identify research hotspots and gaps. Scholars can quantify and analyze the existence, meanings, and linkages of specific phrases, patterns, or notions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Baroi, B.K., Jagadish, Patowari, P.K.: A review on sustainability, health, and safety issues of electrical discharge machining. J. Brazilian Soc. Mech. Sci. Eng. 44(2) (2022). doi:https://doi.org/10.1007/s40430-021-03351-4

  2. Sakthivel, M., Vijayakumar, S., Channankaiah, Rajesh, M.: An overview of delamination in conventional and vibration assisted drilling on glass fiber reinforced polymer composites. J. Chem. Pharm. Sci. 8(1), 99–104 (2015)

    Google Scholar 

  3. Pandey, A.K., Anas, M.: Sustainability and recent trends in micro- electric discharge machining (µ-EDM): A state-of-the-art review. Materials Today: Proceedings:2049–2055. doi: (2022). https://doi.org/10.1016/j.matpr.2021.11.250

  4. Kiran, L.S.N.V.P., Satyanarayana, D.: An improvement of die sinking edm using on hybrid metal matrix composites. Int. J. Sci. Technol. Res. 9(2), 2413–2418 (2020)

    Google Scholar 

  5. Gous, M.Z., Pandey, A., Sarfaraj, S., Tamboli, S.: Fabrication and machining of fiber based composite materials using advance machining process, a review. Materials Today: Proceedings:3617–3622. doi: (2022). https://doi.org/10.1016/j.matpr.2021.12.070

  6. Shyn, C.S., Rajesh, R.: Optimization algorithms and intelligent techniques on electrical discharge machining process. Intl J. Model. Simul. Sci. Comput. 12(4) (2021). doi:https://doi.org/10.1142/S179396232150015X

  7. Thakur, S.S., Patel, B., Upadhyay, R.K., Bagal, D.K., Barua, A.: Machining characteristics of metal matrix composite in powder-mixed electrical discharge machining–A review. Aust J. Mech. Eng. (2022). doi:https://doi.org/10.1080/14484846.2022.2030089

    Article  Google Scholar 

  8. Goyal, K.K., Sharma, N., Gupta, R.D., Singh, G., Rani, D., Banga, H.K., Kumar, R., Pimenov, D.Y., Giasin, K.: A Soft Computing-Based Analysis of Cutting Rate and Recast Layer Thickness for AZ31 Alloy on WEDM Using RSM-MOPSO. Materials. 15(2) (2022). doi:https://doi.org/10.3390/ma15020635

  9. Zhang, C.: Effect of wire electrical discharge machining (WEDM) parameters on surface integrity of nanocomposite ceramics. Ceram. Int. 40, 9657–9662 (2014). doi:https://doi.org/10.1016/j.ceramint.2014.02.046

    Article  Google Scholar 

  10. Uhlmann, E., Schimmelpfennig, T.-M., Perfilov, I., Streckenbach, J., Schweitzer, L.: Comparative Analysis of Dry-EDM and Conventional EDM for the Manufacturing of Micro Holes in Si3N4-TiN. Procedia CIRP. 42, 173–178 (2016). doi:https://doi.org/10.1016/j.procir.2016.02.214

    Article  Google Scholar 

  11. Sakthivel, M., Vijayakumar, S., Channankaiah, Rajesh, M.: A review on delamination in conventional and vibrated assisted drilling in glass fiber reinforced polymer composites. Int. J. ChemTech Res. 7(6), 2794–2801 (2014)

    Google Scholar 

  12. Kataria, R., Kumar, J.: Machining of WC-Co composites- A review. Materials Science Forum, vol 808. Trans Tech Publications Ltd. doi: (2015). https://doi.org/10.4028/www.scientific.net/MSF.808.51

  13. Das, A., Ambastha, S., Priyadarshni, N., Samanta, S., Nagahanumaiah: Fabrication of hydrophobic surfaces on Titanium using Micro-EDM exhibiting antibacterial properties. Proc. Inst. Mech. Eng. Part. B J. Eng. Manuf. 236(8), 1093–1101 (2022). doi:https://doi.org/10.1177/09544054211060981

    Article  Google Scholar 

  14. Mohanty, S., Routara, B.C.: A review on machining of metal matrix composites using nanoparticle mixed dielectric in electro-discharge machining. Int. J. Automot. Mech. Eng. 13(2), 3518–3539 (2016). doi:https://doi.org/10.15282/ijame.13.2.2016.18.0290

    Article  Google Scholar 

  15. Chandel, R.S., Kumar, R., Kapoor, J.: Sustainability aspects of machining operations: A summary of concepts. Materials Today: Proceedings. doi: (2021). https://doi.org/10.1016/j.matpr.2021.04.624

  16. Gopalakannan, S., Senthilvelan, T.: A parametric study of electrical discharge machining process parameters on machining of cast Al/B4C metal matrix nanocomposites. Proc. Inst. Mech. Eng. Part. B J. Eng. Manuf. 227(7), 993–1004 (2013). doi:https://doi.org/10.1177/0954405413479505

    Article  Google Scholar 

  17. Lee, S.W., Oh, Y.S.A., Study on Dry Electrical Discharge Machining Process:. In: 2008 International Conference on Smart Manufacturing Application, 9–11 April 2008 2008. pp 234–238. doi:https://doi.org/10.1109/ICSMA.2008.4505648

  18. Garg, R.K., Singh, K.K., Sachdeva, A., Sharma, V.S., Ojha, K., Singh, S.: Review of research work in sinking EDM and WEDM on metal matrix composite materials. Int. J. Adv. Manuf. Technol. 50(5–8), 611–624 (2010). doi:https://doi.org/10.1007/s00170-010-2534-5

    Article  Google Scholar 

  19. Zadafiya, K., Dinbandhu, Kumari, S., Chattarjee, S., Abhishek, K.: Recent trends in non-traditional machining of shape memory alloys (SMAs): A review. CIRP J. Manuf. Sci. Technol. 32, 217–227 (2021). doi:https://doi.org/10.1016/j.cirpj.2021.01.003

    Article  Google Scholar 

  20. Zhu, Z., Guo, D., Xu, J., Lin, J., Lei, J., Xu, B., Wu, X., Wang, X.: Processing characteristics of micro electrical discharge machining for surface modification of TiNi shape memory alloys using a TiC powder dielectric. Micromachines. 11(11), 1–15 (2020). doi:https://doi.org/10.3390/mi11111018

    Article  Google Scholar 

  21. Chaudhari, R., Vora, J., Parikh, D.M., Wankhede, V., Khanna, S.: Multi-response Optimization of WEDM Parameters Using an Integrated Approach of RSM–GRA Analysis for Pure Titanium. J. Inst. Eng. Ser. D. 101(1), 117–126 (2020). doi:https://doi.org/10.1007/s40033-020-00204-7

    Article  Google Scholar 

  22. Sharma, N., Singh, G., Gupta, M., Hegab, H., Mia, M.: Investigations of surface integrity, bio-activity and performance characteristics during wire-electrical discharge machining of Ti-6Al-7Nb biomedical alloy. Mater. Res. Express. 6(9) (2019). doi:https://doi.org/10.1088/2053-1591/ab3094

  23. Roy, B.K., Mandal, A.: Surface integrity analysis of Nitinol-60 shape memory alloy in WEDM. Mater. Manuf. Process. 34(10), 1091–1102 (2019). doi:https://doi.org/10.1080/10426914.2019.1628256

    Article  Google Scholar 

  24. Mahajan, A., Sidhu, S.S.: Enhancing biocompatibility of Co-Cr alloy implants via electrical discharge process. Mater. Technol. 33(8), 524–531 (2018). doi:https://doi.org/10.1080/10667857.2018.1475144

    Article  Google Scholar 

  25. Devarajaiah, D., Muthumari, C.: Evaluation of power consumption and MRR in WEDM of Ti–6Al–4V alloy and its simultaneous optimization for sustainable production. J. Brazilian Soc. Mech. Sci. Eng. 40(8) (2018). doi:https://doi.org/10.1007/s40430-018-1318-y

  26. Radhakrishnan, P., Vijayaraghavan, L., Ramesh Babu, N.: Assessment of material removal capability with vibration-assisted wire electrical discharge machining. J. Manuf. Process. 26, 323–329 (2017). doi:https://doi.org/10.1016/j.jmapro.2017.03.002

    Article  Google Scholar 

  27. Ou, S.F., Wang, C.Y.: Effects of bioceramic particles in dielectric of powder-mixed electrical discharge machining on machining and surface characteristics of titanium alloys. J. Mater. Process. Technol. 245, 70–79 (2017). doi:https://doi.org/10.1016/j.jmatprotec.2017.02.018

    Article  Google Scholar 

  28. Li, L., Zhao, L., Li, Z.Y., Feng, L., Bai, X.: Surface characteristics of Ti-6Al-4V by SiC abrasive-mixed EDM with magnetic stirring. Mater. Manuf. Process. 32(1), 83–86 (2017). doi:https://doi.org/10.1080/10426914.2016.1151043

    Article  Google Scholar 

  29. Sales, W.F., Oliveira, A.R.F., Raslan, A.A.: Titanium perovskite (CaTiO3) formation in Ti6Al4V alloy using the electrical discharge machining process for biomedical applications. Surf. Coat. Technol. 307, 1011–1015 (2016). doi:https://doi.org/10.1016/j.surfcoat.2016.10.028

    Article  Google Scholar 

  30. Ekmekci, N., Ekmekci, B.: Electrical Discharge Machining of Ti6Al4V in Hydroxyapatite Powder Mixed Dielectric Liquid. Mater. Manuf. Process. 31(13), 1663–1670 (2016). doi:https://doi.org/10.1080/10426914.2015.1090591

    Article  Google Scholar 

  31. Huang, T.S., Hsieh, S.F., Chen, S.L., Lin, M.H., Ou, S.F., Chang, W.T.: Surface modification of TiNi-based shape memory alloys by dry electrical discharge machining. J. Mater. Process. Technol. 221, 279–284 (2015). doi:https://doi.org/10.1016/j.jmatprotec.2015.02.025

    Article  Google Scholar 

  32. Jose, J.V., Shunmugam, M.S.: Investigation into white layer formed on wire electrical discharge machined Ti6Al4V surface. Int. J. Mach. Mach. Mater. 6(3–4), 234–249 (2009). doi:https://doi.org/10.1504/IJMMM.2009.027326

    Article  Google Scholar 

  33. Prakash, C., Senthil, P., Manikandan, N., Palanisamy, D.: Investigations on machinability characteristics of Cast Aluminum Alloy based (LM 26 + Graphite + Fly ash) Hybrid Metal Matrix Composites for automobile components. Mater. Manuf. Process. 37(7), 748–763 (2022). doi:https://doi.org/10.1080/10426914.2021.1962531

    Article  Google Scholar 

  34. Nair, H., Pramanik, A., Basak, A.K., Prakash, C., Debnath, S., Shankar, S., Dixit, A.R.: Experimental investigation on material removal rate, kerf width, surface roughness and the dimensional accuracy the accuracy of hole in Inconel 718 using wire electric discharge. Proc. Inst. Mech. Eng. Part. E J. Process. Mech. Eng. (2022). doi:https://doi.org/10.1177/09544089221096025

    Article  Google Scholar 

  35. Walia, A.S., Srivastava, V., Garg, M., Somani, N., Gupta, N.K., Prakash, C., Bhargava, C., Kotecha, K.: Surface roughness analysis of H13 steel during electrical discharge machining process using Cu–TiC sintered electrode. Materials. 14(20) (2021). doi:https://doi.org/10.3390/ma14205943

  36. Sharma, A., Kumar, V., Babbar, A., Dhawan, V., Kotecha, K., Prakash, C.: Experimental investigation and optimization of electric discharge machining process parameters using grey-fuzzy-based hybrid techniques. Materials. 14(19) (2021). doi:https://doi.org/10.3390/ma14195820

  37. Pramanik, A., Basak, A.K., Prakash, C., Shankar, S., Sharma, S., Narendranath, S.: Recast Layer Formation during Wire Electrical Discharge Machining of Titanium (Ti-Al6-V4) Alloy. J. Mater. Eng. Perform. 30(12), 8926–8935 (2021). doi:https://doi.org/10.1007/s11665-021-06116-1

    Article  Google Scholar 

  38. Prakash, C., Singh, S., Wu, L.Y., Zheng, H.Y., Królczyk, G.: Functional grading of surfaces through hybrid ultrasonic, abrasive water jet, and electric discharge machining processing. J. Brazilian Soc. Mech. Sci. Eng. 43(4) (2021). doi:https://doi.org/10.1007/s40430-021-02931-8

  39. Gupta, N.K., Somani, N., Prakash, C., Singh, R., Walia, A.S., Singh, S., Pruncu, C.I.: Revealing the WEDM process parameters for the machining of pure and heat-treated titanium (Ti-6Al-4V) alloy. Materials. 14(9) (2021). doi:https://doi.org/10.3390/ma14092292

  40. Basak, A., Pramanik, A., Prakash, C., Kotecha, K.: Micro-mechanical characterization of superficial layer synthesized by electric discharge machining process. Mater. Lett. 305 (2021). doi:https://doi.org/10.1016/j.matlet.2021.130769

  41. Kumar, A., Grover, N., Manna, A., Chohan, J.S., Kumar, R., Singh, S., Prakash, C., Pruncu, C.I.: Investigating the influence of wedm process parameters in machining of hybrid aluminum composites. Adv. Compos. Lett. 29, 1–14 (2020). doi:https://doi.org/10.1177/2633366x20963137

    Article  Google Scholar 

  42. Antil, P., Kumar Antil, S., Prakash, C., Królczyk, G., Pruncu, C.: Multi-objective optimization of drilling parameters for orthopaedic implants. Meas. Control. 53(9–10), 1902–1910 (2020). doi:https://doi.org/10.1177/0020294020947126

    Article  Google Scholar 

  43. Pramanik, A., Islam, M.N., Basak, A.K., Dong, Y., Littlefair, G., Prakash, C.: Optimizing dimensional accuracy of titanium alloy features produced by wire electrical discharge machining. Mater. Manuf. Process. 34(10), 1083–1090 (2019). doi:https://doi.org/10.1080/10426914.2019.1628259

    Article  Google Scholar 

  44. Prakash, C., Singh, S., Singh, M., Verma, K., Chaudhary, B., Singh, S.: Multi-objective particle swarm optimization of EDM parameters to deposit HA-coating on biodegradable Mg-alloy. Vacuum. 158, 180–190 (2018). doi:https://doi.org/10.1016/j.vacuum.2018.09.050

    Article  Google Scholar 

  45. Prakash, C., Singh, S., Pabla, B.S., Uddin, M.S.: Synthesis, characterization, corrosion and bioactivity investigation of nano-HA coating deposited on biodegradable Mg-Zn-Mn alloy. Surf. Coat. Technol. 346, 9–18 (2018). doi:https://doi.org/10.1016/j.surfcoat.2018.04.035

    Article  Google Scholar 

  46. Vakharia, V., Vora, J., Khanna, S., Chaudhari, R., Shah, M., Pimenov, D.Y., Giasin, K., Prajapati, P., Wojciechowski, S.: Experimental investigations and prediction of WEDMed surface of nitinol SMA using SinGAN and DenseNet deep learning model. J. Mater. Res. Technol. 18, 325–337 (2022). doi:https://doi.org/10.1016/j.jmrt.2022.02.093

    Article  Google Scholar 

  47. Hou, Y., Xu, J., Lian, Z., Zhai, C., Li, M., Yang, S., Yu, H.: Research on surface microstructures and properties of NiTi shape memory alloy after wire electrical discharge machining. Mater. Today Commun. 31 (2022). doi:https://doi.org/10.1016/j.mtcomm.2022.103521

  48. Singh, S.K., Mali, H.S., Unune, D.R., Abdul-Rani, A.M., Wojciechowski, S.: Material independent effectiveness of workpiece vibration in µ-EDM drilling. J. Mater. Res. Technol. 18, 531–546 (2022). doi:https://doi.org/10.1016/j.jmrt.2022.02.063

    Article  Google Scholar 

  49. Serruys, P.W., Kutryk, M.J.B., Ong, A.T.L.: Coronary-Artery Stents. N. Engl. J. Med. 354(5), 483–495 (2006). doi:https://doi.org/10.1056/NEJMra051091

    Article  Google Scholar 

  50. Erne, P., Schier, M., Resink, T.J.: The Road to Bioabsorbable Stents: Reaching Clinical Reality? Cardiovasc. Interv. Radiol. 29(1), 11–16 (2006). doi:https://doi.org/10.1007/s00270-004-0341-9

    Article  Google Scholar 

  51. Kumar, R., Kaur, S.: Biocompatible and Bioactive Ceramics for Biomedical Applications: Content Analysis. In: Additive Manufacturing of Polymers for Tissue Engineering.CRC Press, pp61–78

  52. Grigoriev, S.N., Hamdy, K., Volosova, M.A., Okunkova, A.A., Fedorov, S.V.: Electrical discharge machining of oxide and nitride ceramics: A review. Mater. Des. 209. (2021). doi:https://doi.org/10.1016/j.matdes.2021.109965

    Article  Google Scholar 

  53. Xie, B., Liu, L., Ji, X., Wang, Y., Zeng, Z., Gou, H., Zhang, B.: Recent Patents on a Discharge State Detection of EDM. Recent. Pat. Eng. 15(6) (2021). doi:https://doi.org/10.2174/1872212115666210712105718

  54. Ma, J., Yuan, J., Ming, W., He, W., Zhang, G., Zhang, H., Cao, Y., Jiang, Z.: Non-traditional processing of carbon nanotubes: A review. Alexandria Eng. J. 61(1), 597–617 (2022). doi:https://doi.org/10.1016/j.aej.2021.06.041

    Article  Google Scholar 

  55. Sun, Y., Jin, L., Liu, M., Gong, Y., Wen, X., Yin, G., Wen, Q.: A comprehensive review on fabrication of ultra small micro tools via electrical discharge machining-based methods. Int. J. Adv. Manuf. Technol. 118(3–4), 703–735 (2022). doi:https://doi.org/10.1007/s00170-021-07976-6

    Article  Google Scholar 

  56. Rajaguru, J., Kumar, P., Arunachalam, N.: Novel carbon nanotubes reinforced copper composite electrode for improved performance of electric discharge machining. Mater. Lett. 307 (2022). doi:https://doi.org/10.1016/j.matlet.2021.131063

  57. Ming, W., Zhang, S., Zhang, G., Du, J., Ma, J., He, W., Cao, C., Liu, K.: Progress in modeling of electrical discharge machining process. Int. J. Heat. Mass. Transf. 187 (2022). doi:https://doi.org/10.1016/j.ijheatmasstransfer.2022.122563

  58. Puertas, I., Luis, C.J.: A study of optimization of machining parameters for electrical discharge machining of boron carbide. Mater. Manuf. Process. 19(6), 1041–1070 (2004). doi:https://doi.org/10.1081/AMP-200035200

    Article  Google Scholar 

  59. Aspinwall, D.K., Soo, S.L., Berrisford, A.E., Walder, G.: Workpiece surface roughness and integrity after WEDM of Ti-6Al-4V and Inconel 718 using minimum damage generator technology. CIRP Ann. Manuf. Technol. 57(1), 187–190 (2008). doi:https://doi.org/10.1016/j.cirp.2008.03.054

    Article  Google Scholar 

  60. Kumar, S., Singh, R., Singh, T.P., Sethi, B.L.: Surface modification by electrical discharge machining: A review. J. Mater. Process. Technol. 209(8), 3675–3687 (2009). doi:https://doi.org/10.1016/j.jmatprotec.2008.09.032

    Article  Google Scholar 

  61. Beri, N., Maheshwari, S., Sharma, C., Kumar, A.: Technological advancement in electrical discharge machining with powder metallurgy processed electrodes: A review. Mater. Manuf. Process. 25(10), 1186–1197 (2010). doi:https://doi.org/10.1080/10426914.2010.512647

    Article  Google Scholar 

  62. Kumar, A., Maheshwari, S., Sharma, C., Beri, N.: Research developments in additives mixed electrical discharge machining (AEDM): A state of art review. Mater. Manuf. Process. 25(10), 1166–1180 (2010). doi:https://doi.org/10.1080/10426914.2010.502954

    Article  Google Scholar 

  63. Muthuramalingam, T., Mohan, B.: A review on influence of electrical process parameters in EDM process. Arch. Civ. Mech. Eng. 15(1), 87–94 (2015). doi:https://doi.org/10.1016/j.acme.2014.02.009

    Article  Google Scholar 

  64. Devgan, S., Sidhu, S.S.: Evolution of surface modification trends in bone related biomaterials: A review. Mater. Chem. Phys. 233, 68–78 (2019). doi:https://doi.org/10.1016/j.matchemphys.2019.05.039

    Article  Google Scholar 

  65. Joshi, A.Y., Joshi, A.Y.: A systematic review on powder mixed electrical discharge machining. Heliyon. 5(12) (2019). doi:https://doi.org/10.1016/j.heliyon.2019.e02963

  66. Maity, K.P., Choubey, M.: A review on vibration-assisted EDM, micro-EDM and WEDM. Surf. Rev. Lett. 26(5) (2019). doi:https://doi.org/10.1142/S0218625X18300083

  67. Kumar, S.S., Varol, T., Canakci, A., Kumaran, S.T., Uthayakumar, M.: A review on the performance of the materials by surface modification through EDM. Int. J. Lightweight Mater. Manuf. 4(1), 127–144 (2021). doi:https://doi.org/10.1016/j.ijlmm.2020.08.002

    Article  Google Scholar 

  68. Aspinwall, D.K., Dewes, R.C., Lee, H.G., Simao, J.: Electrical discharge surface alloying of Ti and Fe workpiece materials using refractory powder compact electrodes and Cu wire. CIRP Ann. Manuf. Technol. 52(1), 151–156 (2003). doi:https://doi.org/10.1016/S0007-8506(07)60553-8

    Article  Google Scholar 

  69. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., Lim, W.M.: How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 133, 285–296 (2021). doi:https://doi.org/10.1016/j.jbusres.2021.04.070

    Article  Google Scholar 

  70. Moral-Muñoz, J.A., Herrera-Viedma, E., Santisteban-Espejo, A., Cobo, M.J.: Software tools for conducting bibliometric analysis in science: An up-to-date review.Profesional de la Información29 (1) (2020)

  71. Kaur, S., Kumar, R., Kaur, R., Singh, S., Rani, S., Kaur, A.: Piezoelectric materials in sensors: Bibliometric and visualization analysis. Materials Today: Proceedings 65:3780–3786. doi: (2022). https://doi.org/10.1016/j.matpr.2022.06.484

  72. Kumar, R., Singh, S., Sidhu, A.S., Pruncu, C.I.: Bibliometric analysis of specific energy consumption (Sec) in machining operations: A sustainable response. Sustainability. 13(10) (2021). doi:https://doi.org/10.3390/su13105617

  73. Rani, S., Kumar, R.: Bibliometric review of actuators: Key automation technology in a smart city framework. Materials Today: Proceedings. doi: (2022). https://doi.org/10.1016/j.matpr.2021.12.469

  74. Kumar, R., Goel, P.: Exploring the Domain of Interpretive Structural Modelling (ISM) for Sustainable Future Panorama: A Bibliometric and Content Analysis. Arch. Comput. Methods Eng. (2021). doi:https://doi.org/10.1007/s11831-021-09675-7

    Article  Google Scholar 

  75. van Eck, N.J., Waltman, L.: Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 84, 523–538 (2010). doi:https://doi.org/10.1007/s11192-009-0146-3

    Article  Google Scholar 

  76. Aria, M.: bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetrics. 11, 959–975 (2017). doi:https://doi.org/10.1016/j.joi.2017.08.007

    Article  Google Scholar 

  77. van Eck, N.J., Waltman, L.: How to Normalize Cooccurrence Data? An Analysis of Some Well-Known Similarity Measures. JASIST. 60, 1635–1651 (2009). doi:https://doi.org/10.1002/asi.21075

    Article  Google Scholar 

  78. Chandel, R.S., Sharma, S., Kaur, S., Singh, S., Kumar, R.: Smart watches: A review of evolution in bio-medical sector. Mater. Today Proc. 50, 1053–1066 (2021). doi:https://doi.org/10.1016/j.matpr.2021.07.460

    Article  Google Scholar 

  79. Kumar, R., Singh, S., Sidhu, A.S., Pruncu, C.I.: Bibliometric Analysis of Specific Energy Consumption (SEC) in Machining Operations: A Sustainable Response. Sustainability. 13(10) (2021). doi:https://doi.org/10.3390/su13105617

  80. Sidhu, A.S., Singh, S., Kumar, R.: Bibliometric analysis of entropy weights method for multi-objective optimization in machining operations. Mater. Today Proc. 50, 1248–1255 (2021). doi:https://doi.org/10.1016/j.matpr.2021.08.132

    Article  Google Scholar 

  81. Zhang, J., Yu, Q., Zheng, F., Long, C., Lu, Z., Duan, Z.: Comparing keywords plus of WOS and author keywords: A case study of patient adherence research. J. Association Inform. Sci. Technol. 67 (2015). doi:https://doi.org/10.1002/asi.23437

  82. Kumar, R., Rani, S., Awadh, M.A.: Exploring the Application Sphere of the Internet of Things in Industry 4.0: A Review, Bibliometric and Content Analysis. Sensors. 22(11), 4276 (2022)

    Article  Google Scholar 

  83. Van Eck, N.J.W.: Text mining and visualization using VOSviewer. ISSI Newsl. 7(3), 50–54 (2011). https://arxiv.org/ftp/arxiv/papers/1109/1109.2058.pdf

    Google Scholar 

  84. Kumar, R., Bilga, P.S., Singh, S.: An Investigation of Energy Efficiency in Finish Turning of en 353 Alloy Steel. In: Sangwan KS, Herrmann C (eds) 28th CIRP Conference on Life Cycle Engineering, LCE 2021, 2021. Elsevier B.V., pp 654–659. doi:https://doi.org/10.1016/j.procir.2021.01.170

  85. Banga, H.K., Kalra, P., Kumar, R., Singh, S., Pruncu, C.I.: Optimization of the Cycle Time of Robotics Resistance Spot Welding for Automotive Applications. J. Adv. Manuf. Process. n/a (n/a). e10084 (2021). doi:https://doi.org/10.1002/amp2.10084

  86. Singh, S., Kumar, R., Kumar, R., Chohan, J.S., Ranjan, N., Kumar, R.: Aluminum metal composites primed by fused deposition modeling-assisted investment casting: Hardness, surface, wear, and dimensional properties. Proc. Inst. Mech. Eng. Part. L J. Mat. Des. Appl. 236(3), 674–691 (2022). doi:https://doi.org/10.1177/14644207211054143

    Article  Google Scholar 

  87. Kumar, R., Kaur, S.: Multi Attribute Decision Making Approach to Select Microwave Oven with TOPSIS Method. Paper presented at the 7th International Conference on Advancements in Engineering and Technology (ICAET-2019), Bhai Gurdas Institute of Engineering & Technology, Sangrur, Punjab, India, (2019)

  88. Kumar, R., Singh, S., Aggarwal, V., Singh, S., Pimenov, D.Y., Giasin, K., Nadolny, K.: Hand and Abrasive Flow Polished Tungsten Carbide Die: Optimization of Surface Roughness, Polishing Time and Comparative Analysis in Wire Drawing. Materials. 15(4) (2022). doi:https://doi.org/10.3390/ma15041287

  89. Sidhu, R.S., Kumar, R., Kumar, R., Goel, P., Singh, S., Pimenov, D.Y., Giasin, K., Adamczuk, K.: Joining of Dissimilar Al and Mg Metal Alloys by Friction Stir Welding. Materials. 15(17) (2022). doi:https://doi.org/10.3390/ma15175901

  90. Sidhu, A.S., Singh, S., Kumar, R., Pimenov, D.Y., Giasin, K.: Prioritizing energy-intensive machining operations and gauging the influence of electric parameters: An industrial case study. Energies. 14(16) (2021). doi:https://doi.org/10.3390/en14164761

  91. Trzepieciński, T., Najm, S.M., Lemu, H.G.: Current Concepts for Cutting Metal-Based and Polymer-Based Composite Materials. J. Compos. Sci. 6(5) (2022). doi:https://doi.org/10.3390/jcs6050150

  92. Maurya, S.K., Susheel, C.K., Manna, A.: Experimental investigation of wire EDM parameters during machining of fabricated hybrid Al/(SiC + ZrO2 + NiTi)-MMC. Adv. Mat. Proc. Tech. (2022). doi:https://doi.org/10.1080/2374068X.2022.2109684

    Article  Google Scholar 

  93. Channi, A.S., Bains, H.S., Grewal, J.S., Chidambaranthan, V.S., Kumar, R.: Tool wear rate during electrical discharge machining for aluminium metal matrix composite prepared by squeeze casting:A prospect as a biomaterial

  94. Daud, N.D., Hasan, M.N., Saleh, T., Leow, P.L., Mohamed Ali, M.S.: Non-traditional machining techniques for silicon wafers. Int. J. Adv. Manuf. Technol. 121(1–2), 29–57 (2022). doi:https://doi.org/10.1007/s00170-022-09365-z

    Article  Google Scholar 

  95. Zhong, Z.W.: Processes for environmentally friendly and/or cost-effective manufacturing. Mater. Manuf. Process. 36(9), 987–1009 (2021). doi:https://doi.org/10.1080/10426914.2021.1885709

    Article  Google Scholar 

  96. Prakash, C., Kansal, H.K., Pabla, B.S., Puri, S.: Processing and Characterization of Novel Biomimetic Nanoporous Bioceramic Surface on β-Ti Implant by Powder Mixed Electric Discharge Machining. J. Mater. Eng. Perform. 24(9), 3622–3633 (2015). doi:https://doi.org/10.1007/s11665-015-1619-6

    Article  Google Scholar 

  97. Singh, N.K., Singh, S., Patel, B., Upadhyay, R.K.: Improvement of process performance of powder mixed electrical discharge machining by optimisation -A Review. Adv. Mat. Proc. Tech. (2021). doi:https://doi.org/10.1080/2374068X.2021.1945300

    Article  Google Scholar 

  98. Sagbas, A., Gürtuna, F., Polat, U.: Comparison of ANN and RSM modeling approaches for WEDM process optimization. Materialpruefung. 63(4), 386–392 (2021)

    Google Scholar 

  99. Prakash, C., Kansal, H.K., Pabla, B.S., Puri, S., Aggarwal, A.: Electric discharge machining - A potential choice for surface modification of metallic implants for orthopedic applications: A review. Proc. Inst. Mech. Eng. Part. B J. Eng. Manuf. 230(2), 331–353 (2016). doi:https://doi.org/10.1177/0954405415579113

    Article  Google Scholar 

  100. Prakash, C., Kansal, H.K., Pabla, B.S., Puri, S.: To optimize the surface roughness and microhardness of β-Ti alloy in PMEDM process using Non-dominated Sorting Genetic Algorithm-II. In: 2nd International Conference on Recent Advances in Engineering and Computational Sciences, RAECS 2015, 2016. Institute of Electrical and Electronics Engineers Inc. doi:https://doi.org/10.1109/RAECS.2015.7453288

  101. Micallef, C., Zhuk, Y., Aria, A.I.: Recent progress in precision machining and surface finishing of tungsten carbide hard composite coatings. Coatings. 10(8) (2020). doi:https://doi.org/10.3390/COATINGS10080731

  102. Li, J., Laghari, R.A.: A review on machining and optimization of particle-reinforced metal matrix composites. Int. J. Adv. Manuf. Technol. 100(9–12), 2929–2943 (2019). doi:https://doi.org/10.1007/s00170-018-2837-5

    Article  Google Scholar 

  103. Prakash, C., Kansal, H.K., Pabla, B.S., Puri, S.: Multi-objective optimization of powder mixed electric discharge machining parameters for fabrication of biocompatible layer on β-Ti alloy using NSGA-II coupled with Taguchi based response surface methodology. J. Mech. Sci. Technol. 30(9), 4195–4204 (2016). doi:https://doi.org/10.1007/s12206-016-0831-0

    Article  Google Scholar 

  104. Prakash, C., Kansal, H.K., Pabla, B.S., Puri, S.: Effect of surface nano-porosities fabricated by powder mixed electric discharge machining on bone-implant interface: An experimental and finite element study. Nanosci. Nanatechnol. Lett. 8(10), 815–826 (2016). doi:https://doi.org/10.1166/nnl.2016.2255

    Article  Google Scholar 

  105. Venkatesh, V., Swain, N., Srinivas, G., Kumar, P., Barshilia, H.C.: Review on the machining characteristics and research prospects of conventional microscale machining operations. Mater. Manuf. Process. 32(3), 235–262 (2017). doi:https://doi.org/10.1080/10426914.2016.1151045

    Article  Google Scholar 

  106. Kapoor, J., Singh, S., Khamba, J.S.: High-performance wire electrodes for wire electrical-discharge machining - A review. Proc. Inst. Mech. Eng. Part. B J. Eng. Manuf. 226(11), 1757–1773 (2012). doi:https://doi.org/10.1177/0954405412460354

    Article  Google Scholar 

  107. Prakash, C., Kansal, H.K., Pabla, B.S., Puri, S.: Powder Mixed Electric Discharge Machining: An Innovative Surface Modification Technique to Enhance Fatigue Performance and Bioactivity of β-Ti Implant for Orthopedics Application. J. Comput. Inf. Sci. Eng. 16(4) (2016). doi:https://doi.org/10.1115/1.4033901

  108. Aliyu, A.A., Abdul-Rani, A.M., Ginta, T.L., Prakash, C., Axinte, E., Razak, M.A., Ali, S.: A Review of Additive Mixed-Electric Discharge Machining: Current Status and Future Perspectives for Surface Modification of Biomedical Implants. Adv Mater Sci Eng 2017. doi: (2017). https://doi.org/10.1155/2017/8723239

  109. Prakash, C., Kansal, H.K., Pabla, B.S., Puri, S.: Experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zrβ-titanium alloy. Mater. Manuf. Process. 32(3), 274–285 (2017). doi:https://doi.org/10.1080/10426914.2016.1198018

    Article  Google Scholar 

  110. Prakash, C., Uddin, M.S.: Surface modification of β-phase Ti implant by hydroaxyapatite mixed electric discharge machining to enhance the corrosion resistance and in-vitro bioactivity. Surf. Coat. Technol. 326, 134–145 (2017). doi:https://doi.org/10.1016/j.surfcoat.2017.07.040

    Article  Google Scholar 

Download references

Acknowledgements

The authors express deep gratitude to I. K. Gujral Punjab Technical University, Kapurthala-Jalandhar (Punjab), India, for allowing them to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raman Kumar.

Ethics declarations

Conflict of interest

“The authors declare no conflict of interest.”

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Channi, A.S., Bains, H.S., Grewal, J.S. et al. Exploring the application sphere of electrical discharge machining in composite materials considering surface features: a content analysis. Int J Interact Des Manuf 17, 2095–2114 (2023). https://doi.org/10.1007/s12008-022-01060-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-01060-3

Keywords

Navigation