Skip to main content

Advertisement

Log in

Artificial intelligence based tool condition monitoring for digital twins and industry 4.0 applications

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The high demand for machining process automation has placed real-time tool condition monitoring as one of the top priorities of academic and industrial scholars in the past decade. But the presence of numerous known and unknown machining variables and challenging operating conditions such as high temperature and pressure makes it a daunting task. However, recent advancements in sensor and digital technologies have enabled in-process condition monitoring and real-time process optimization a highly accurate, robust, and effective process. Hence, the objective of the article is to provide a summary of the factors influencing the performance of cutting tools, critical machining variables to be monitored, techniques applied to monitor tool conditions, and artificial intelligence algorithms used to predict tool performance by analyzing and reviewing the literature. The future direction of intelligent cutting tools and how they would help in building the foundation for advanced smart factory ecosystems such as digital twins and Industry 4.0 are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

Code availability

Not applicable.

Abbreviations

MRR:

Material Removal Rate

PVD:

Physical Vapor Deposition

CVD:

Chemical Vapor Deposition

CBN:

Cubic Boron Nitride

PCD:

Polycrystalline Diamond

MQL:

Minimum Quantity Lubrication

OEE:

Overall Equipment Effectiveness

DSA:

Dynamic Signal Analyzer

FFT:

Fast Fourier Transform

SVM:

Support Vector Machine

HMM:

Hidden Markov Model

RBF:

Radius Basis Function

BPNN:

Back Propagation Neural Network

ANN:

Artificial Neural Networks

PCBN:

Polycrystalline Cubic Boron Nitride

CNN:

Convolutional Neural Network

FL:

Fuzzy Logic

AISI:

American Iron and Steel Institute

RA:

Regression Analysis

AI:

Artificial Intelligence

DTA:

Decision Tree Algorithm

DFT:

Discrete Fourier Transform

RF:

Random Forest

DC:

Direct current

CNC:

Computer Numerical Control

GA:

Genetic Algorithm

RMS:

Root Mean Square

RDC:

Ring-Down Count

BPNN:

Back Propagation Neural Network

CCD:

Charged Coupled Device

CMOS:

Complementary Metal-Oxide Semiconductor

HMM:

Hidden Markov Model

PCA:

Principal Component Analysis

ANFIS:

Adaptive Neuro-Fuzzy Inference System

RVM:

Relevance Vector Machine

ELM:

Extreme Learning Machines

NN:

Neural Networks

CNN:

Convolution Neural Networks

RNN:

Recurrent Neural Networks

GLCM:

Gray-Level Co-occurrence Matrix

IoT:

Internet of Things

References

  1. Muthuswamy, P., Nagarajan, S.K.: Experimental Investigation on the Effect of Different Micro-Geometries on Cutting Edge and Wiper Edge on Surface Roughness and Forces in Face Milling. Lubricants. 9(10), 102 (2021). https://doi.org/10.3390/lubricants9100102

    Article  Google Scholar 

  2. Mohanraj, T., Shankar, S., Rajasekar, R., Sakthivel, N.R., Pramanik, A.: Tool condition monitoring techniques in milling process-a review. J. Mater. Res. Technol. 9(1), 1032–1042 (2020). https://doi.org/10.1016/j.jmrt.2019.10.031

    Article  Google Scholar 

  3. Lister, P.M., Barrow, G.: Tool Condition Monitoring Systems. In: Davies B.J. (eds) Proceedings of the Twenty-Sixth International Machine Tool Design and Research Conference. Palgrave, London. (1986). https://doi.org/10.1007/978-1-349-08114-1_36

  4. Atli, A.V., Urhan, O.Ä.U., Z. H. A. N., Ertürk, S.A.R.P., Sönmez, M.: A computer vision-based fast approach to drilling tool condition monitoring. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220(9), 1409–1415. (2006). https://doi.org/10.1243/09544054JEM412

  5. Nitin Ambhore, D., Kamble, S., Chinchanikar, V., Wayal: Tool Condition Monitoring System: A Review, Materials Today: Proceedings, Volume 2, Issues 4–5, Pages 3419–3428, (2015). https://doi.org/10.1016/j.matpr.2015.07.317

  6. Padmakumar, M., Dinakaran, D.: Investigation on the effect of cryogenic treatment on tungsten carbide milling insert with 11% cobalt (WC–11%Co). SN Appl. Sci. 2, 1050 (2020). https://doi.org/10.1007/s42452-020-2872-3

    Article  Google Scholar 

  7. Manoj Kumar, B.V., Ram Kumar, J., Basu, B.: Crater wear mechanisms of TiCN–Ni–WC cermets during dry machining,International Journal of Refractory Metals and Hard Materials, Volume 25, Issues 5–6, 2007, Pages 392–399, https://doi.org/10.1016/j.ijrmhm.2006.12.001

  8. Padmakumar, M., Vijaya Ganesa Velan, M.: Machinability analysis in high speed turning of Ti–6Al–4V alloy and investigation of wear mechanism in AlTiN PVD coated tungsten carbide tool, Engineering Research Express, Volume 3, Number 4, 045011. https://doi.org/10.1088/2631-8695/ac2e12

  9. Ezugwu, E.O., Wang, Z.M.: Titanium alloys and their machinability—a review. J. Mater. Process. Technol. 68(3), 262–274 (1997). https://doi.org/10.1016/S0924-0136(96)00030-1

    Article  Google Scholar 

  10. Padmakumar, M., Arunachalam, M.: Analyzing the effect of cutting parameters and tool nose radius on forces, machining power and tool life in face milling of ductile iron and validation using finite element analysis. Eng. Res. Express. (2020). https://doi.org/10.1088/2631-8695/aba1a1

    Article  Google Scholar 

  11. Padmakumar, M., Shiva Pradeep, N.: Effect of cutting edge form factor (K-factor) on the performance of a face milling tool. CIRP J. Manufact. Sci. Technol. 31, 305–313 (2020). https://doi.org/10.1016/j.cirpj.2020.06.004

    Article  Google Scholar 

  12. Padmakumar, Muthuswamy: A novel wiper insert design and an experimental investigation to compare its performance in face milling. Adv. Mater. Process. Technol. (2022). https://doi.org/10.1080/2374068X.2022.2034310

    Article  Google Scholar 

  13. Shunmugesh, K., Panneerselvam, K.: Multi-performance optimization of micro-drilling using Taguchi technique based on membership function. Indian J. Eng. Mater. Sci. 25, 383–390 (2018)

    Google Scholar 

  14. Shunmugesh, K., Panneerselvam, K.: Optimization of drilling process parameters via Taguchi, TOPSIS and RSA techniques. Arch. Metall. Mater. 62(3), 1803–1812 (2017). DOI: https://doi.org/10.1515/amm-2017-0273

    Article  Google Scholar 

  15. Shunmugesh, K., Panneerselvam, K.: Multi-response Optimization in Drilling of Carbon Fiber Reinforced Polymer Using Artificial Neural Network Correlated to Meta-heuristics Algorithm, Procedia Technology, Volume 25, Pages955–962, (2016). https://doi.org/10.1016/j.protcy.2016.08.187

  16. Muthuswamy, P.: Influence of micro-geometry of wiper facet on the performance of a milling insert: an experimental investigation and validation using numerical simulation. Sādhanā Volume 47, Article number: 140. (2022). https://doi.org/10.1007/s12046-022-01912-4

  17. Shiva Pradeep, N., Padmakumar, M., Sarada, B.N.: Experimental investigation to assess the effects of trumpet hone on tool life and surface quality in milling of AISI4140 steel, FME Transactions, Volume 47, Issue 3, Pages437–441. (2019). https://doi.org/10.5937/fmet1903437s

  18. Padmakumar, Muthuswamy: Investigation on sustainable machining characteristics of tools with serrated cutting edges in face milling of AISI 304 Stainless Steel, Procedia CIRP, Volume 105, Pages 865–871, (2022). https://doi.org/10.1016/j.procir.2022.02.143

  19. Padmakumar, M., Dinakaran, D.: A review on cryogenic treatment of tungsten carbide (WC-Co) tool material, Materials and Manufacturing Processes, Volume 36, Issue 6, Pages 637–659. (2021). https://doi.org/10.1080/10426914.2020.1843668

  20. Vijaya Ganesa Velan, M., Subha Shree, M., Muthuswamy, P.: Effect of cutting parameters and high-pressure coolant on forces, surface roughness and tool life in turning AISI 1045 steel, Materials Today: Proceedings, Volume 43, Part 1, 2021, Pages 482–489, https://doi.org/10.1016/j.matpr.2020.12.020

  21. Subha Shree, M., Vijaya Ganesa Velan, M., Padmakumar, M.: Experimental Investigation on Effect of High Pressure Coolant with Various Cutting Speed and Feed on Surface Roughness in Cylindrical Turning of AISI 1060 Steel Using Carbide Insert, Advanced Materials Research, Volume984–985, Pages 3–8, (2014). https://doi.org/10.4028/www.scientific.net/AMR.984-985.3

  22. Subha Shree, M., Raguraman, K.: Experimental Investigation on Effect of High Pressure Coolant with Various Cutting Speed and Feed on Cutting Force and Tool Life in Cylindrical Turning of AISI 1060 Steel Using Carbide Insert. Int. J. Appl. Eng. Res. 10(55) (2015). https://doi.org/10.2139/ssrn.3963657

  23. Murugesan, S., Sudharsanan, T., Murugesan, V.: P Muthuswamy. Overall Equipment Effectiveness (OEE) analysis and improvement in a spinning unit.International Journal of Applied Engineering Research, Vol. 10, No. 55, 2015, Special Issues, https://doi.org/10.2139/ssrn.4032186

  24. Andrew, S., Basics, D.S.A.: Crystal Instruments, (2016). https://www.crystalinstruments.com/dynamic-signal-analysis-basics, accessed on 7 Sep 2022

  25. Malla, C., Panigrahi, I.: Review of Condition Monitoring of Rolling Element Bearing Using Vibration Analysis and Other Techniques. J. Vib. Eng. Technol. 7, 407–414 (2019). https://doi.org/10.1007/s42417-019-00119-y

    Article  Google Scholar 

  26. Instruments, D.: Waveform analysis using the fourier transform. (1995). https://www.dataq.com/resources/pdfs/article_pdfs/an11.pdf, accessed on 7 Sep 2022

  27. Shunmugesh, R., Rajasekar, C., Moganapriya, Karthik., V.: Optimization of machining force and delamination factor of GFRP in dry drilling process using taguchi method, Advances in Natural and Applied Sciences, Vol. 11, Issue 8, Pages220–230. (2017)

  28. Monroy Vazquez, K.P., Giardini, C., Ceretti, E.: Cutting Force Modeling. In: The International Academy for Production Engineering, Laperrière L., Reinhart G. (eds) CIRP Encyclopedia of Production Engineering. Springer, Berlin, Heidelberg. (2014). https://doi.org/10.1007/978-3-642-20617-7_6399

  29. Sathish Kumar, N., Padmakumar, M.: An experimental study of applying various cutting edges on wiper milling inserts in face milling AISI 1070 steel. Int. J. Mech. Industrial Eng. 2(4), 257–262 (2013). https://doi.org/10.47893/IJMIE.2013.1107

    Article  Google Scholar 

  30. Oraby, S.E., Hayhurst, D.R.: Development of models for tool wear force relationships in metal cutting. Int. J. Mech. Sci. Volume. 33(2), 125–138 (1991). https://doi.org/10.1016/0020-7403(91)90062-8

    Article  Google Scholar 

  31. Mehdi Nouri, B.K., Fussell, et al.: Real-time tool wear monitoring in milling using a cutting condition independent method. Int. J. Mach. Tools Manuf. 89, 1–13 (2015). https://doi.org/10.1016/j.ijmachtools.2014.10.011

    Article  Google Scholar 

  32. Wang, G., Yang, Y., Li, Z.: Force Sensor Based Tool Condition Monitoring Using a Heterogeneous Ensemble Learning Model. Sensors. 14(11), 21588–21602 (2014). https://doi.org/10.3390/s141121588

    Article  Google Scholar 

  33. Tugrul Özel, A., Nadgir: Prediction of flank wear by using back propagation neural network modeling when cutting hardened H-13 steel with chamfered and honed CBN tools. Int. J. Mach. Tools Manuf. 42, 287–297 (2002). https://doi.org/10.1016/S0890-6955(01)00103-1

    Article  Google Scholar 

  34. Twardowski, P., Wiciak-Pikuła, M.: Prediction of Tool Wear Using Artificial Neural Networks during Turning of Hardened Steel. Materials. 12(19), 3091 (2019). https://doi.org/10.3390/ma12193091

    Article  Google Scholar 

  35. Jinjiang Wang, J., Xie, R., Zhao, L., Zhang, L., Duan: Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing, Robotics and Computer-Integrated Manufacturing, Volume 45, Pages 47–58, (2017). https://doi.org/10.1016/j.rcim.2016.05.010

  36. Sohyung Cho, S., Asfour, A., Onar, N., Kaundinya: Tool breakage detection using support vector machine learning in a milling process. Int. J. Mach. Tools Manuf. 45(3), 241–249 (2005). https://doi.org/10.1016/j.ijmachtools.2004.08.016

    Article  Google Scholar 

  37. Wang, Z., Rahman, M.: 11.10 - High-Speed Machining, Editor(s): Saleem Hashmi, Gilmar Ferreira Batalha, Chester J. Van Tyne, Bekir Yilbas, Comprehensive Materials Processing, Elsevier, Pages 221–253, ISBN 9780080965338, (2014). https://doi.org/10.1016/B978-0-08-096532-1.01113-4

  38. Ueda, T.: Cutting Temperature. In: The International Academy for Production Engineering, Laperrière L., Reinhart G. (eds) CIRP Encyclopedia of Production Engineering. Springer, Berlin, Heidelberg. (2014). https://doi.org/10.1007/978-3-642-20617-7_6412

  39. Conradie, P.J.T., Oosthuizen, G.A., Treurnicht, N.F., Shaalane, A., A: Overview of work piece temperature measurement techniques for machining of Ti6Al4V. S. Afr. J. Ind. Eng. 23(2), 116–130 (2012)

    Google Scholar 

  40. Pavel Kovac, M., Gostimirovic, D., Rodic, B., Savkovic: Using the temperature method for the prediction of tool life in sustainable production, Measurement, Volume 133, Pages320–327, (2019). https://doi.org/10.1016/j.measurement.2018.09.074

  41. Çağrı, V., Yıldırım, M., Sarıkaya, T., Kıvak, Å., Şirin: The effect of addition of hBN nanoparticles to nanofluid-MQL on tool wear patterns, tool life, roughness and temperature in turning of Ni-based Inconel 625, Tribology International, Volume 134, Pages443–456, (2019). https://doi.org/10.1016/j.triboint.2019.02.027

  42. Jinfu Zhao, Z., Liu: Influences of coating thickness on cutting temperature for dry hard turning Inconel 718 with PVD TiAlN coated carbide tools in initial tool wear stage. J. Manuf. Process. 56, 1155–1165 (2020). https://doi.org/10.1016/j.jmapro.2020.06.010

    Article  Google Scholar 

  43. Kus, A., Isik, Y., Cakir, M.C., Coşkun, S., Özdemir, K.: Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting.Sensors 2015, 15,1274–1291. https://doi.org/10.3390/s150101274

  44. Akhil, C.S., Ananthavishnu, M.H., Akhil, C.K., et al.: Measurement of Cutting Temperature during Machining, IOSR Journal of Mechanical and Civil Engineering, Volume 13, Issue 2, Version I (Mar. - 108–122. (2016)

  45. Kulkarni, A., Joshi, G., Karekar, A., Sargade, V.: Investigation on cutting temperature and cutting force in turning AISI 304 austenitic stainless steel using AlTiCrN coated carbide insert. Int. J. Mach. Mach. Mater. 15, 3–4 (2014). https://doi.org/10.1504/ijmmm.2014.060546

    Article  Google Scholar 

  46. Fulin Jiang, Z., Liu, Y., Wan, Z., Shi: Analytical modeling and experimental investigation of tool and workpiece temperatures for interrupted cutting 1045 steel by inverse heat conduction method. J. Mater. Process. Technol. 213(6), 887–894 (2013). https://doi.org/10.1016/j.jmatprotec.2013.01.004

    Article  Google Scholar 

  47. Li, T., Shi, T., Tang, Z., Liao, G., Duan, J., Han, J., He, Z.: Real-time tool wear monitoring using thin-film thermocouple. J. Mater. Process. Technol. 288, 116901 (2021). https://doi.org/10.1016/j.jmatprotec.2020.116901

    Article  Google Scholar 

  48. Brili, N., Ficko, M., Klančnik, S.: Tool Condition Monitoring of the Cutting Capability of a Turning Tool Based on Thermography. Sensors. 21(19), 6687 (2021). https://doi.org/10.3390/s21196687

    Article  Google Scholar 

  49. Mustafa Kuntoğlu, H., Sağlam: Investigation of signal behaviors for sensor fusion with tool condition monitoring system in turning, Measurement, Volume 173,108582, (2021). https://doi.org/10.1016/j.measurement.2020.108582

  50. Ihsan Korkut, A., Acır, M., Boy: Application of regression and artificial neural network analysis in modelling of tool–chip interface temperature in machining, Expert Systems with Applications, Volume 38, Issue 9, Pages 11651–11656, (2011). https://doi.org/10.1016/j.eswa.2011.03.044

  51. Teti, R., Jemielniak, K., O’Donnell, G., Dornfeld, D.: Advanced monitoring of machining operations, CIRP Annals, Volume 59, Issue 2, Pages 717–739, (2010). https://doi.org/10.1016/j.cirp.2010.05.010

  52. Bonifacio, M.E.R., Diniz, A.E.: Correlating tool wear, tool life, surface roughness and tool vibration in finish turning with coated carbide tools, Wear, Volume 173, Issues 1–2, 1994, Pages137–144, https://doi.org/10.1016/0043-1648(94)90266-6

  53. Jiang, C.Y., Zhang, Y.Z., Xu, H.J., Annals, C.I.R.P.: Volume 36, Issue 1, Pages 45–48, (1987). https://doi.org/10.1016/S0007-8506(07)62550-5

  54. Krishnakumar, P., Rameshkumar, K., Ramachandran, K.I.: Tool Wear Condition Prediction Using Vibration Signals in High Speed Machining (HSM) of Titanium (Ti-6Al-4V) Alloy, Procedia Computer Science, Volume 50, Pages270–275, (2015). https://doi.org/10.1016/j.procs.2015.04.049

  55. Dimla, D.E., Lister, P.M.: On-line metal cutting tool condition monitoring.: I: force and vibration analyses. Int. J. Mach. Tools Manuf. 40(5), 739–768 (2000). https://doi.org/10.1016/S0890-6955(99)00084-X

    Article  Google Scholar 

  56. Scheffer, C., Kratz, H., Heyns, P.S., Klocke, F.: Development of a tool wear-monitoring system for hard turning. Int. J. Mach. Tools Manuf. 43(10), 973–985 (2003). https://doi.org/10.1016/S0890-6955(03)00110-X

    Article  Google Scholar 

  57. Rao, K.V., Kumar, Y.P., Singh, V.K., et al.: Vibration-based tool condition monitoring in milling of Ti-6Al-4V using an optimization model of GM(1,N) and SVM. Int. J. Adv. Manuf. Technol. 115, 1931–1941 (2021). https://doi.org/10.1007/s00170-021-07280-3

    Article  Google Scholar 

  58. Patra, K., Jha, A., Szalay, T.: “Tool condition monitoring in micro-drilling using vibration signals and artificial neural network: Subtitle: TCM in micro-drilling using vibration signals,“ 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), pp. 1–5, doi: (2017). https://doi.org/10.1109/ICIEAM.2017.8076196

  59. Ghani, A.K., Choudhury, I.A., Husni: Study of tool life, surface roughness and vibration in machining nodular cast iron with ceramic tool. J. Mater. Process. Technol. 127(1), 17–22 (2002). https://doi.org/10.1016/S0924-0136(02)00092-4

    Article  Google Scholar 

  60. Yuan, J., Liu, L., Yang, Z., et al.: Tool wear condition monitoring by combining spindle motor current signal analysis and machined surface image processing. Int. J. Adv. Manuf. Technol. 116, 2697–2709 (2021). https://doi.org/10.1007/s00170-021-07366-y

    Article  Google Scholar 

  61. Tamas Szecsi: A DC motor based cutting tool condition monitoring system. J. Mater. Process. Technol. Volumes. 92–93 (1999). Pages 350–354 https://doi.org/10.1016/S0924-0136(99)00182-X

  62. Salgado, D.R., Alonso, F.J.: An approach based on current and sound signals for in-process tool wear monitoring. Int. J. Mach. Tools Manuf. 47, 2140–2152 (2007). https://doi.org/10.1016/j.ijmachtools.2007.04.013

    Article  Google Scholar 

  63. Ghosh, N., Ravi, Y.B., Patra, A., et al.: Estimation of tool wear during CNC milling using neural network-based sensor fusion, Mechanical Systems and Signal Processing, Volume 21, Issue 1, Pages466–479, (2007). https://doi.org/10.1016/j.ymssp.2005.10.010

  64. Stavropoulos, P., Papacharalampopoulos, A., Vasiliadis, E., et al.: Tool wear predictability estimation in milling based on multi-sensorial data. Int. J. Adv. Manuf. Technol. 82, 509–521 (2016). https://doi.org/10.1007/s00170-015-7317-6

    Article  Google Scholar 

  65. Justo García-Sanz-Calcedo, SALGADO, D.R., Alfonso, G., GONZALEZ: Drilling Projects by Tool Condition Monitoring System. Eng. Trans. 64(4), 555–561 (2016)

    Google Scholar 

  66. Ryo Koike, K., Ohnishi, T., Aoyama: A sensorless approach for tool fracture detection in milling by integrating multi-axial servo information, CIRP Annals, Volume 65, Issue 1, Pages 385–388, (2016). https://doi.org/10.1016/j.cirp.2016.04.101

  67. Rizal, M., Ghani, J., Nuawi, M., Che, H.: A review of sensor systemand application in milling process for tool condition monitoring. Res. J. Appl. Sci. Eng. Technol. 7(10), 2083–2097 (2014). https://doi.org/10.19026/rjaset.7.502

    Article  Google Scholar 

  68. António João de Melo Martins Araújo, The generation mechanisms of acoustic emission in metal cutting, Doctoral Thesis:, University of South Wales. (2006)

  69. Jemielniak, K., Arrazola, P.J.: Application of AE and cutting force signals in tool condition monitoring in micro-milling. CIRP J. Manufact. Sci. Technol. 1(2), 97–102 (2008). https://doi.org/10.1016/j.cirpj.2008.09.007

    Article  Google Scholar 

  70. Sunilkumar Kakade, L., Vijayaraghavan, R., Krishnamurthy, In-process tool wear and chip-form monitoring in face milling operation using acoustic emission., Journal of Materials Processing Technology, Volume 44, Issues 3–4, Pages 207–214, (1994). https://doi.org/10.1016/0924-0136(94)90433-2

  71. Jemielniak, K., Otman, O., Tool failure detection based on analysis of acoustic emission signals, Journal of Materials Processing Technology, Volume 76, Issues 1–3, Pages 192–197, (1998). https://doi.org/10.1016/S0924-0136(97)00379-8

  72. Kannatey-Asibu, E., Dornfeld, D.A., A study of tool wear using statistical analysis of metal-cutting acoustic emission, Wear, Volume 76, Issue 2, Pages 247–261, (1982). https://doi.org/10.1016/0043-1648(82)90009-6

  73. Gabriel, V., Matusky, J., Prusek, A., Zizka, J. “Study of machining process by acoustic emission method.“ In Proceedings of the IV International Conference on Monitoring and Automatic Supervision in Manufacturing, Miedzeszyn, CIRP, pp. 143–148. (1995)

  74. Mukhopadhyay, C.K., Jayakumar, T., Raj, B., Venugopal, S., Statistical Analysis of Acoustic Emission Signals Generated During Turning of a Metal Matrix Composite, Journal of the Brazilian Society of Mechanical Sciences and Engineering 34 (2), 2012, pp. 145–154. (2012)

  75. Lee, D.E., Hwang, I., Valente, C.M.O., Oliveira, J.F.G., Dornfeld, D.A.: Precision manufacturing process monitoring with acoustic emission. Int. J. Mach. Tools Manuf. 46(2), 176–188 (2006). https://doi.org/10.1016/j.ijmachtools.2005.04.001

    Article  Google Scholar 

  76. Moriwaki, T.: Application of acoustic emission measurement to sensing of wear and breakage of cutting tool. Bull. Japan Soc. Precision Eng. 17(3), 154–160 (1983)

    Google Scholar 

  77. Mathew, M.T., Pai, P.S., Rocha, L.A.: An effective sensor for tool wear monitoring in face milling: Acoustic emission. Sadhana. 33, 227–233 (2008). https://doi.org/10.1007/s12046-008-0016-3

    Article  Google Scholar 

  78. Hassan, M., Sadek, A., Attia, M.H., Thomson, V.: Intelligent machining: real-time tool condition monitoring and intelligent adaptive control systems. J. Mach. Eng. 18(1), 5–17 (2018)

    Article  Google Scholar 

  79. Bhuiyan, M.S.H., Choudhury, I.A., Dahari, M., Nukman, Y., Dawal, S.Z., Application of acoustic emission sensor to investigate the frequency of tool wear and plastic deformation in tool condition monitoring, Measurement, Volume 92, Pages208–217, (2016). https://doi.org/10.1016/j.measurement.2016.06.006

  80. Olufayo, O., Abou-El-Hossein, K.: Tool life estimation based on acoustic emission monitoring in end-milling of H13 mould-steel. Int. J. Adv. Manuf. Technol. 81, 39–51 (2015). https://doi.org/10.1007/s00170-015-7091-5

    Article  Google Scholar 

  81. Richard, Y., Chiou, Steven, Y., Liang: Analysis of acoustic emission in chatter vibration with tool wear effect in turning. Int. J. Mach. Tools Manuf. 40, 927–941 (2000). https://doi.org/10.1016/S0890-6955(99)00093-0

    Article  Google Scholar 

  82. Neslušan, M., Mičieta, B., Mičietová, A., Čilliková, M., Mrkvica, I., Detection of tool breakage during hard turning through acoustic emission at low removal rates, Measurement, Volume 70, Pages1–13, (2015). https://doi.org/10.1016/j.measurement.2015.03.035

  83. Chengdong Wang, Z., Bao, P., Zhang, W., Ming, M., Chen, Tool wear evaluation under minimum quantity lubrication by clustering energy of acoustic emission burst signals, Measurement, Volume 138, Pages256–265, (2019). https://doi.org/10.1016/j.measurement.2019.02.004

  84. Weller, E.J., Schrier, H.M., Weichbrodt, B.“What sound can be expected from a worn tool?“:525–534. (1969)

  85. Lu, M.-C., Kannatey-Asibu, E. Jr.: Analysis of sound signal generation due to flank wear in turning. J. Manuf. Sci. Eng. 124(4), 799–808 (2002)

    Article  Google Scholar 

  86. Abdul, B., Sadat, S., Raman: Detection of tool flank wear using acoustic signature analysis. Wear. 115(3), 265–272 (1987). https://doi.org/10.1016/0043-1648(87)90216-X

    Article  Google Scholar 

  87. Silva, R.G., Reuben, R.L., Baker, K.J., Wilcox, S.J.: Mech. Syst. Signal Process. 12(2), 319–332 (1998). https://doi.org/10.1006/mssp.1997.0123 Tool wear monitoring of turning operations by neural network and expert system classification of a feature set generated from multiple sensors

  88. Kopač, J., Šali, S., Tool wear monitoring during the turning process, Journal of Materials Processing Technology, Volume 113, Issues 1–3, Pages 312–316, (2001). https://doi.org/10.1016/S0924-0136(01)00621-5

  89. Liu, M.K., Tseng, Y.H., Tran, M.Q.: Tool wear monitoring and prediction based on sound signal. Int. J. Adv. Manuf. Technol. 103, 3361–3373 (2019). https://doi.org/10.1007/s00170-019-03686-2

    Article  Google Scholar 

  90. Madhusudana, C.K., Kumar, H., Narendranath, S.: Face milling tool condition monitoring using sound signal. Int. J. Syst. Assur. Eng. Manag. 8, 1643–1653 (2017). https://doi.org/10.1007/s13198-017-0637-1

    Article  Google Scholar 

  91. Raja, J., Lim, W., Venkatases, C.: Tool Condition Monitoring using Competitive Neural Network and Hilbert-Huang Transform. Asian J. Sci. Res. 6, 703–714 (2013). https://doi.org/10.3923/ajsr.2013.703.714

    Article  Google Scholar 

  92. Mannan, M.A., Kassim, A.A., Jing, M.: Application of image and sound analysis techniques to monitor the condition of cutting tools. Pattern Recognit. Lett. 21(11), 969–979 (2000). https://doi.org/10.1016/S0167-8655(00)00050-7

    Article  MATH  Google Scholar 

  93. Dutta, S., Pal, S.K., Mukhopadhyay, S., Sen, R.: Application of digital image processing in tool condition monitoring: A review. CIRP J. Manufact. Sci. Technol. 6, 212–232 (2013). https://doi.org/10.1016/j.cirpj.2013.02.005

    Article  Google Scholar 

  94. Sun, W.-H., Yeh, S.-S.: Using the Machine Vision Method to Develop an On-machine Insert Condition Monitoring System for Computer Numerical Control Turning Machine Tools. Materials. 11(10), 1977 (2018). https://doi.org/10.3390/ma11101977

    Article  Google Scholar 

  95. Barreiro, J., Castejón, M., Alegre, E., Hernández, L.K., Use of descriptors based on moments from digital images for tool wear monitoring,International Journal of Machine Tools and Manufacture, Volume 48, Issue 9, 2008, Pages 1005–1013, https://doi.org/10.1016/j.ijmachtools.2008.01.005

  96. Weckenmann, A., Nalbantic, K., Precision Measurement of Cutting Tools with two Matched Optical 3D-Sensors, CIRP Annals, Volume 52, Issue 1, Pages 443–446, (2003). https://doi.org/10.1016/S0007-8506(07)60621-0

  97. Jurkovic, J., Korosec, M., Kopac, J.: New approach in tool wear measuring technique using CCD vision system. Int. J. Mach. Tools Manuf. 45(9), 1023–1030 (2005). https://doi.org/10.1016/j.ijmachtools.2004.11.030

    Article  Google Scholar 

  98. Wang, W., Wong, Y.S., Hong, G.S., Flank wear measurement by successive image analysis, Computers in Industry. 56(8–9), 816–830 (2005). https://doi.org/10.1016/j.compind.2005.05.009

  99. Tiwari, K., Shaik, A., Arunachalam, N.: Tool wear prediction in end milling of Ti-6Al-4V through Kalman filter-based fusion of texture features and cutting forces. Procedia Manuf. 26, 1459–1470 (2018). https://doi.org/10.1016/j.promfg.2018.07.095

    Article  Google Scholar 

  100. Lange, J., Abu-Zahra, N.: Tool Chatter Monitoring in Turning Operations Using Wavelet Analysis of Ultrasound Waves. Int. J. Adv. Manuf. Technol. 20, 248–254 (2002). https://doi.org/10.1007/s001700200149

    Article  Google Scholar 

  101. Dinakaran, D., Sampathkumar, S., Sivashanmugam, N.: An experimental investigation on monitoring of crater wear in turning using ultrasonic technique. Int. J. Mach. Tools Manuf. 49, 1234–1237 (2009). https://doi.org/10.1016/j.ijmachtools.2009.08.001

    Article  Google Scholar 

  102. Scheffer, C., heyns, P.S., Wear monitoring in turning operations using vibration and strain measurements, Mechanical Systems and Signal Processing, Volume 15, Issue 6, Pages 1185–1202, (2001). https://doi.org/10.1006/mssp.2000.1364

  103. Bulent Kaya, C., Oysu, H.M., Ertunc: Force-torque based on-line tool wear estimation system for CNC milling of Inconel 718 using neural networks. Adv. Eng. Softw. 42, 76–84 (2011). https://doi.org/10.1016/j.advengsoft.2010.12.002

    Article  Google Scholar 

  104. Haicheng Yu, K., Wang, R., Zhang, et al. An Improved Tool Wear Monitoring Method Using Local Image and Fractal Dimension of Workpiece, Volume 2021, Article ID 9913581, https://doi.org/10.1155/2021/9913581

  105. Zeng, W., Jiang, X., Blunt, L.: Surface characterisation-based tool wear monitoring in peripheral milling. Int. J. Adv. Manuf. Technol. 40, 226–233 (2009). https://doi.org/10.1007/s00170-007-1352-x

    Article  Google Scholar 

  106. Zhang, C., Zhou, L.: Modeling of tool wear for ball end milling cutter based on shape mapping. Int. J. Interact. Des. Manuf. 7, 171–181 (2013). https://doi.org/10.1007/s12008-012-0176-6

    Article  Google Scholar 

  107. Kuntoğlu, M., Aslan, A., Pimenov, D.Y., et al.: A Review of Indirect Tool Condition Monitoring Systems and Decision-Making Methods in Turning: Critical Analysis and Trends. Sensors. 21(1), 108 (2021). https://doi.org/10.3390/s21010108

    Article  Google Scholar 

  108. Zhou, Y., Xue, W.: Review of tool condition monitoring methods in milling processes. Int. J. Adv. Manuf. Technol. 96, 2509–2523 (2018). https://doi.org/10.1007/s00170-018-1768-5

    Article  Google Scholar 

  109. Haykin, S. “Neural networks: a comprehensive foundation. ” Mc Millan, New Jersey (2010): 1–24. (1999)

  110. Baig, R.U., Javed, S., Khaisar, M., Shakoor, M., Raja, P.: Development of an ANN model for prediction of tool wear in turning EN9 and EN24 steel alloy. Adv. Mech. Eng. (2021). https://doi.org/10.1177/16878140211026720

    Article  Google Scholar 

  111. Özden, G., Mata, F., Öteyaka, M.: Artificial neural network modeling for prediction of cutting forces in turning unreinforced and reinforced polyamide. J. Thermoplast. Compos. Mater. 34, 353–363 (2019). https://doi.org/10.1177/0892705719845712

    Article  Google Scholar 

  112. Hadiyan, P.P., Moeini, R., Ehsanzadeh, E., Application of static and dynamic artificial neural networks for forecasting inflow discharges, case study: Sefidroud Dam reservoir, Sustainable Computing: Informatics and Systems, Volume 27,100401, (2020). https://doi.org/10.1016/j.suscom.2020.100401

  113. Kamthan, S., Singh, H., “Hierarchical Fuzzy Logic for Multi-Input Multi-Output Systems,” in IEEE Access, vol. 8, pp. 206966–206981, (2020). https://doi.org/10.1109/ACCESS.2020.3037901

  114. Abraham, A.: Rule-based expert systems. In: Sydenham., P.H., Thorn, R. (eds.) Handbook of Measuring System Design, pp. 909–919. Oklahoma State University, Stillwater, OK, USA (2005)

    Google Scholar 

  115. Alavi, N.: Date grading using rule-based fuzzy inference system. Int. J. Agricultural Technol. 8, 1243–1254 (2012)

    Google Scholar 

  116. Cuka, B., Kim, D.-W., Fuzzy logic based tool condition monitoring for end-milling, Robotics and Computer-Integrated Manufacturing, Volume 47, Pages 22–36, (2017). https://doi.org/10.1016/j.rcim.2016.12.009

  117. Marek Balazinski, E., Czogala, K., Jemielniak, J., Leski, Tool condition monitoring using artificial intelligence methods, Engineering Applications of Artificial Intelligence, Volume 15, Issue 1, Pages 73–80, (2002). https://doi.org/10.1016/S0952-1976(02)00004-0

  118. Cuneyt Aliustaoglu, H., Metin Ertunc, H., Ocak, Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system, Mechanical Systems and Signal Processing, Volume 23, Issue 2, Pages 539–546, (2009). https://doi.org/10.1016/j.ymssp.2008.02.010

  119. Scheffer, C., Engelbrecht, H., Heyns, P.S.: A comparative evaluation of neural networks and hidden Markov models for monitoring turning tool wear. Neural Comput. & Applic. 14, 325–336 (2005). https://doi.org/10.1007/s00521-005-0469-9

    Article  Google Scholar 

  120. Monica Franzese, A., Iuliano, Hidden Markov Models, Editor(s): Shoba Ranganathan, Michael Gribskov, Kenta Nakai, Christian Schönbach, Encyclopedia of Bioinformatics and Computational Biology, Academic Press, Pages 753–762, (2019). https://doi.org/10.1016/B978-0-12-809633-8.20488-3

  121. Chen, F.R., Wilcox, L.D., Bloomberg, D.S., A comparison of discrete and continuous hidden Markov models for phrase spotting in text images, Proceedings of 3rd International Conference on Document Analysis and Recognition, pp. 398–402 vol.1, doi: (1995). https://doi.org/10.1109/ICDAR.1995.599022

  122. Wang, L., Mehrabi, M., Kannatey-Asibu, E.: Hidden Markov Model-based Tool Wear Monitoring in Turning. J. Manuf. Sci. Eng. 124, 651–658 (2002). https://doi.org/10.1115/1.1475320

    Article  Google Scholar 

  123. Huseyin, M., Ertunc, K.A., Loparo, Hasan Ocak, Tool wear condition monitoring in drilling operations using hidden Markov models (HMMs), International Journal of Machine Tools and Manufacture. 41(9), 1363–1384, (2001). https://doi.org/10.1016/S0890-6955(00)00112-7

  124. Subakan, Y.C., Traa, J., Smaragdis, P., Hsu, D., Method of moments learning for left-to-right Hidden Markov models, 2015 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp. 1–5, doi: (2015). https://doi.org/10.1109/WASPAA.2015.7336940

  125. Vapnik, V.N.: The Nature of Statistical Learning Theory. Statistics for Engineering and Information Science. Springer, New York, NY (2000). https://doi.org/10.1007/978-1-4757-3264-1_1

    Book  MATH  Google Scholar 

  126. Zouhri, W., Homri, L., Dantan, J.Y.: Identification of the key manufacturing parameters impacting the prediction accuracy of support vector machine (SVM) model for quality assessment. Int. J. Interact. Des. Manuf. 16, 177–196 (2022). https://doi.org/10.1007/s12008-021-00807-8

    Article  Google Scholar 

  127. Sun, J., Rahman, M., Wong, Y.S., Hong, G.S.: Multiclassification of tool wear with support vector machine by manufacturing loss consideration. Int. J. Mach. Tools Manuf. 44(11), 1179–1187 (2004). https://doi.org/10.1016/j.ijmachtools.2004.04.003

    Article  Google Scholar 

  128. Bhat, N.N., Dutta, S., Vashisth, T., et al.: Tool condition monitoring by SVM classification of machined surface images in turning. Int. J. Adv. Manuf. Technol. 83, 1487–1502 (2016). https://doi.org/10.1007/s00170-015-7441-3

    Article  Google Scholar 

  129. Yu, Y., Zhou, L.: Acoustic emission signal classification based on support vector machine. TELKOMNIKA Indonesian Journal of Electrical Engineering. 10(5), 1027–1032 (2012). https://doi.org/10.11591/telkomnika.v10i5.1387

    Article  Google Scholar 

  130. Wang, G., Xie, Q., Zhang, Y.: Tool condition monitoring system based on support vector machine and differential evolution optimization. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 231, 805–813. (2016). https://doi.org/10.1177/0954405415619871

  131. Raja Santhi, A., Muthuswamy, P.: Influence of Blockchain Technology in Manufacturing Supply Chain and Logistics. Logistics. 6, 15. (2022). https://doi.org/10.3390/logistics6010015

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthuswamy Padmakumar.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Disclaimer

This disclaimer informs readers that the views, thoughts, and opinions expressed in the article belong solely to the authors, and they do not purport to reflect the opinions, views, policies, or positions of authors’ employer, affiliates, organization, committee, or other group or individual.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthuswamy, P., K, S. Artificial intelligence based tool condition monitoring for digital twins and industry 4.0 applications. Int J Interact Des Manuf 17, 1067–1087 (2023). https://doi.org/10.1007/s12008-022-01050-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-01050-5

Keywords

Navigation