Skip to main content
Log in

Computational optimization of a steel A-36 monolithic mechanism by bonobo algorithm and intelligent model for precision machining application

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

Monolithic mechanism is a potential mechanism for used in precision machining applications. However, it exhibits the limited problems of the resonant frequency and the capacity of load. This paper proposes a design optimization for a new monolithic mechanism. This mechanism is built in a symmetric configuration to generate a translation movement along the vertical axis. Basically, there is a complex relationship among the performances of the mechanism and its geometrical factors. Firstly, a mechanical model of the proposed MM was built, and the numerical data are collected through the finite element simulations. Next, the intelligent surrogate model based on the adaptive-network-based fuzzy inference system with three Genfis types is built to form the fitness function for both the resonant frequency and the force. The modeling results indicated that the Genfis2 and Genfis3 are the best modeler for the resonant frequency and the force, respectively. Lastly, the bonobo optimizer is utilized to maximize the resonant frequency and the force. For case study 1, the results found that the optimal frequency is found about 1013 Hz. For case study 2, the optimal force is found approximately 202.0154 N. Lastly, the errors between the predicted and verified values for two case studies are lower than 4%. The proposed method is a potential optimizer for other monolithic mechanisms and related engineering designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Babbar, A., Jain, V., Gupta, D., Agrawal, D., Prakash, C., Singh, S., et al.: Experimental analysis of wear and multi-shape burr loading during neurosurgical bone grinding. J. Mater. Res. Technol. 12, 15–28 (2021)

    Article  Google Scholar 

  2. Khan, I.A.: Multi-response ergonomic design of human-CNC machine interface. Int. J. Interact. Des. Manuf. 8(1), 13–31 (2014)

    Article  MathSciNet  Google Scholar 

  3. Limón-Molina, G.M., González-Ángeles, Á., Nuño-Moreno, V., Luna-Sandoval, G.: Proposes to enable a CNC mill from 3 axes to 5 axes synchronized. Int. J. Interact. Des. Manuf. 12(1), 145–150 (2018)

    Article  Google Scholar 

  4. Le Chau, N., Tran, N.T., Dao, T.-P.: Topology and size optimization for a flexure hinge using an integration of SIMP, deep artificial neural network, and water cycle algorithm. Appl. Soft Comput. 113, 108031 (2021). https://doi.org/10.1016/j.asoc.2021.108031

    Article  Google Scholar 

  5. Le Chau, N., Ho, N.L., Vinh Chung, T.T., Huang, S.C., Dao, T.P.: Computing optimization of a parallel structure-based monolithic gripper for manipulation using weight method-based grey relational analysis. Int. J. Ambient Comput. Intell. 12(3), 39–74 (2021)

    Article  Google Scholar 

  6. Chau, N.L., Ho, N.L., Tran, N.T., Dao, T.-P.: Analytical model and computing optimization of a compliant gripper for the assembly system of mini direct-current motor. Int. J. Ambient Comput. Intell. 12(1), 1–28 (2021)

    Article  Google Scholar 

  7. Pramanik, A., Islam, M.N., Basak, A.K., Dong, Y., Littlefair, G., Prakash, C.: Optimizing dimensional accuracy of titanium alloy features produced by wire electrical discharge machining. Mater. Manuf. Process. 34(10), 1083–1090 (2019). https://doi.org/10.1080/10426914.2019.1628259

    Article  Google Scholar 

  8. Sharma, A., Kumar, V., Babbar, A., Dhawan, V., Kotecha, K., Prakash, C.: Experimental investigation and optimization of electric discharge machining process parameters using grey-fuzzy-based hybrid techniques. Materials (Basel) 14(19), 5820 (2021)

    Article  Google Scholar 

  9. Hao, G.: Determinate synthesis of symmetrical, monolithic tip-tilt-piston flexure stages. J. Mech. Des. Trans. ASME 139(4), 1–9 (2017)

    Article  Google Scholar 

  10. Liang, C., Wang, F., Tian, Y., Zhao, X., Zhang, H.: A novel monolithic piezoelectric actuated flexure-mechanism based wire clamp for microelectronic device packaging, p. 045106 (2015). https://www.springer.com/engineering/electronics/j

  11. Search H, Journals C, Contact A, Iopscience M, Address IP, Rahman AM, et al. Ce Pte Us Pt. pp. 0–68 (2017)

  12. Yongli He RL. Authors : Ac ce d M us pt. 2D Mater., pp. 1–6 (2020). https://doi.org/10.1088/2053-1583/abe778

  13. Hao, G., Li, H., Kavanagh, R.: Design of decoupled, compact, and monolithic spatial translational compliant parallel manipulators based on the position space. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 230(3), 367–378 (2016)

    Article  Google Scholar 

  14. Cai, K., Tian, Y., Wang, F., Zhang, D., Shirinzadeh, B.: Development of a piezo-driven 3-DOF stage with T-shape flexible hinge mechanism. Robot. Comput. Integr. Manuf. 37, 125–138 (2016). https://doi.org/10.1016/j.rcim.2015.07.004

    Article  Google Scholar 

  15. Lee, C.B., Lee, S.K., Tarbutton, J.A.: Positioning control effectiveness of optical knife edge displacement sensor-embedded monolithic precision stage. Sens. Actuators A Phys. 233, 390–396 (2015). https://doi.org/10.1016/j.sna.2015.07.035

    Article  Google Scholar 

  16. Guo, K., Ni, M., Chen, H., Sui, Y.: A monolithic adjusting mechanism for optical element based on modified 6-PSS parallel mechanism. Sens. Actuators A Phys. 251, 1–9 (2016). https://doi.org/10.1016/j.sna.2016.09.035

    Article  Google Scholar 

  17. Ding, B., Li, Y., Xiao, X., Tang, Y., Li, B.: Design and analysis of a 3-DOF planar micromanipulation stage with large rotational displacement for micromanipulation system. Mech. Sci. 8, 117–126 (2017)

    Article  Google Scholar 

  18. Ding, B., Li, X., Li, Y.: FEA-based optimization and experimental verification of a typical flexure-based constant force module. Sens. Actuators A Phys. 332, 113083 (2021). https://doi.org/10.1016/j.sna.2021.113083

    Article  Google Scholar 

  19. Ding, B., Zhao, J., Li, Y.: Design of a spatial constant-force end-effector for polishing/deburring operations. Int. J. Adv. Manuf. Technol. 116, 3507–3515 (2021)

    Article  Google Scholar 

  20. Qin, Y.D., Zhao, X., Shirinzadeh, B., Tian, Y.L., Zhang, D.W.: Closed-form modeling and analysis of an XY flexure-based nano-manipulator. Chin. J. Mech. Eng. Engl. Ed. (2018). https://doi.org/10.1186/s10033-018-0211-z

    Article  Google Scholar 

  21. Xie, Y., Li, Y., Cheung, C.F., Zhu, Z., Chen, X.: Design and analysis of a novel compact XYZ parallel precision positioning stage. Microsyst. Technol. 27(5), 1925–1932 (2021). https://doi.org/10.1007/s00542-020-04968-6

    Article  Google Scholar 

  22. Meng, R., Zhang, W., Zhou, S., Wang, C., Zhao, J., Ge, W.: A micro monolithic integrated force-torque sensor with piezoelectric tuning mechanism. Microsyst. Technol. 26(9), 2879–2886 (2020). https://doi.org/10.1007/s00542-020-04829-2

    Article  Google Scholar 

  23. Naves, M., Nijenhuis, M., Seinhorst, B., Hakvoort, W.B.J., Brouwer, D.M.: T-Flex: a fully flexure-based large range of motion precision hexapod. Precis. Eng. 72, 912–928 (2021). https://doi.org/10.1016/j.precisioneng.2021.08.015

    Article  Google Scholar 

  24. Ghafarian, M., Shirinzadeh, B., Al-Jodah, A., Das, T.K., Wei, W., Tian, Y., et al.: An XYZ micromanipulator for precise positioning applications. J. Micro-Bio Robot. 16(1), 53–63 (2020)

    Article  Google Scholar 

  25. Liu, M., Zhang, X., Fatikow, S.: Design and analysis of a multi-notched flexure hinge for compliant mechanisms. Precis. Eng. (2017). https://doi.org/10.1016/j.precisioneng.2016.12.012

    Article  Google Scholar 

  26. Ling, M., Cao, J., Zeng, M., Lin, J., Inman, D.J.: Enhanced mathematical modeling of the displacement amplification ratio for piezoelectric compliant mechanisms. Smart Mater. Struct. 25(7), 1–11 (2016). https://doi.org/10.1088/0964-1726/25/7/075022

    Article  Google Scholar 

  27. Noveanu, S., Lobontiu, N., Lazaro, J., Mandru, D.: Substructure compliance matrix model of planar branched flexure-hinge mechanisms: design, testing and characterization of a gripper. Mech. Mach. Theory 91, 1–20 (2015). https://doi.org/10.1016/j.mechmachtheory.2015.04.001

    Article  Google Scholar 

  28. Šalinić, S., Nikolić, A.: A new pseudo-rigid-body model approach for modeling the quasi-static response of planar flexure-hinge mechanisms. Mech. Mach. Theory 124, 150–161 (2018)

    Article  Google Scholar 

  29. Kuresangsai, P., Cole, M.O.T.: Kinematic modeling and design optimization of flexure-jointed planar mechanisms using polynomial bases for flexure curvature. Mech. Mach. Theory 132, 80–97 (2019)

    Article  Google Scholar 

  30. Lum, G.Z., Teo, T.J., Yeo, S.H., Yang, G., Sitti, M.: Structural optimization for flexure-based parallel mechanisms—towards achieving optimal dynamic and stiffness properties. Precis. Eng. 45, 195–207 (2015)

    Article  Google Scholar 

  31. Ghafarian, M., Shirinzadeh, B., Al-Jodah, A., Das, T.K., Pinskier, J.: FEA-based optimization of a complete structure of a monolithic z/tip/tilt micromanipulator. J. Micro-Bio Robot. 16(1), 93–110 (2020)

    Article  Google Scholar 

  32. Lee, C., Lee, J.W., Ryu, S.G., Oh, J.H.: Optimum design of a large area, flexure based XYθ mask alignment stage for a 12-inch wafer using grey relation analysis. Robot. Comput. Integr. Manuf. 58, 109–119 (2019). https://doi.org/10.1016/j.rcim.2019.02.005

    Article  Google Scholar 

  33. Ling, M., Howell, L.L., Cao, J., Chen, G.: Kinetostatic and dynamic modeling of flexure-based compliant mechanisms: a survey. Appl. Mech. Rev. 72(3), 1–19 (2020)

    Article  Google Scholar 

  34. Das, A.K., Pratihar, D.K.: Bonobo optimizer (BO): an intelligent heuristic with self-adjusting parameters over continuous spaces and its applications to engineering problems. Appl. Intell. 52, 2942–2874 (2021)

    Article  Google Scholar 

  35. Dinh, V.B., Le, N., Nam, C., Le Thanh, T.P., Dao, P.: Topology—based geometry optimization for a new compliant mechanism using improved adaptive neuro-fuzzy inference system and neural network algorithm. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01552-y

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by Industrial University of Ho Chi Minh City (IUH) under Grant Number 01/HD-DHCN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Phong Dao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, D.N., Dang, M.P., Huang, SC. et al. Computational optimization of a steel A-36 monolithic mechanism by bonobo algorithm and intelligent model for precision machining application. Int J Interact Des Manuf 17, 2271–2281 (2023). https://doi.org/10.1007/s12008-022-00967-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-00967-1

Keywords

Navigation