Skip to main content
Log in

Enhancing machining performance of Inconel 825 alloy using grey relation analysis and JAYA-TLBO optimization techniques

  • Original Article
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The widespread application of Inconel alloy in the automotive and aerospace industries underscores the significance of optimizing machining parameters. This optimization is crucial for enhancing the performance outcomes of the machining process, directly impacting both product quality and cost-effectiveness. In machining operations, variables such as feed rate (f), cutting speed (S), and depth of cut (t) play pivotal roles. The resulting output performance indices of particular relevance include cutting force (Rf), material removal rate (MRR), and surface roughness (Ra). ANOVA has been done to find the influential variable on the output responses and it has been noticed that the ‘t’ was the most influential variable, followed by ‘f’ with respect to the Fr, Ra, and MRR during machining of Inconel 825. This study focuses on evaluating the overall process performance during the machining of Inconel 825 alloy. To achieve this, grey relation analysis is employed to transform multiple output variables into a unified response known as the overall grey relation index (OGI). Subsequently, a nonlinear regression model is developed, which expresses the OGI as a function of the aforementioned input variables. For the optimization process, the JAYA and TLBO algorithms are utilized, employing the OGI as the fitness function. The optimized settings determined are a feed rate of 0.333 mm/rev, a cutting speed of 247 RPM, and a depth of cut of 0.4 mm, resulting in an approximate fitness function value of 0.6982 for maximizing the OGI. To validate the solution, a confirmatory test is conducted, revealing an improvement of 1.9% in the OGI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No data available.

References

  1. Paswan, K., Pramanik, A., Chattopadhyaya, S.: Machining performance of Inconel 718 using graphene nanofluid in EDM. Mater. Manuf. Process. 35(1), 33–42 (2020). https://doi.org/10.1080/10426914.2020.1711924

    Article  Google Scholar 

  2. Mali, H.S., Unune, D.R.: Machinability of Nickel-Based Superalloys: an Overview. Elsevier Ltd (2017)

    Google Scholar 

  3. Sivaiah, P., Ajay Kumar, G.V., Singh, M.M., Kumar, H.: Effect of novel hybrid texture tool on turning process performance in MQL machining of Inconel 718 superalloy. Mater. Manuf. Process. 35(1), 61–71 (2020). https://doi.org/10.1080/10426914.2019.1697444

    Article  Google Scholar 

  4. Rahul, Abhishek, K., Datta, S., Biswal, B.B., Mahapatra, S.S.: Machining performance optimization for electro-discharge machining of Inconel 601, 625, 718 and 825: an integrated optimization route combining satisfaction function, fuzzy inference system and Taguchi approach. J. Braz. Soc. Mech. Sci. Eng. 39(9), 3499–3527 (2017). https://doi.org/10.1007/s40430-016-0659-7

    Article  Google Scholar 

  5. Kumar, A., Singh, H., Kumar, V.: Study the parametric effect of abrasive water jet machining on surface roughness of Inconel 718 using RSM-BBD techniques. Mater. Manuf. Process. 33(13), 1483–1490 (2018). https://doi.org/10.1080/10426914.2017.1401727

    Article  Google Scholar 

  6. Jafarian, F.: Electro discharge machining of Inconel 718 alloy and process optimization. Mater. Manuf. Process. 35(1), 95–103 (2020). https://doi.org/10.1080/10426914.2020.1711919

    Article  Google Scholar 

  7. Thakur, A., Gangopadhyay, S.: State-of-the-art in surface integrity in machining of nickel-based super alloys. Int. J. Mach. Tools Manuf 100, 25–54 (2016). https://doi.org/10.1016/j.ijmachtools.2015.10.001

    Article  Google Scholar 

  8. Weber, J. H.: Nickel-based superalloys: an overview. In Encyclopedia of Materials: Science and Technology. pp 6154–6155, 2001

  9. Yadav, R.K., Gandhi, A., Abhishek, K., Mahapatra, S.S., Nandi, G.: Machining performance optimization for turning of Inconel 825: an integrated optimization route combining grey relation analysis with JAYA and TLBO. Int. J. Innov. Technol. Explor. Eng. 8(10), 1–7 (2019). https://doi.org/10.35940/ijitee.i8534.0881019

    Article  Google Scholar 

  10. Kumar, A., Mandal, A., Dixit, A.R., Das, A.K.: Performance evaluation of Al2O3 nano powder mixed dielectric for electric discharge machining of Inconel 825. Mater. Manuf. Process. 33(9), 986–995 (2018). https://doi.org/10.1080/10426914.2017.1376081

    Article  Google Scholar 

  11. Grguraš, D., Kern, M., Pušavec, F.: Cutting performance of solid ceramic and carbide end milling tools in machining of nickel based alloy Inconel 718 and stainless steel 316L. Adv. Prod. Eng. Manag. 14(1), 27–38 (2019). https://doi.org/10.14743/apem2019.1.309

    Article  Google Scholar 

  12. Venkatesan, K., Devendiran, S., Goswami, B.B., Kumar, P., Rishabhsingh Tejpalsinngh, S.: Study of Forces, Surface Finish, and Tool Life on Machining of Inconel 718. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-6374-0_38

    Book  Google Scholar 

  13. Parida, A.K.: Analysis of chip geometry in hot machining of Inconel 718 Alloy. Iran. J. Sci. Technol.: Trans Mech. Eng. 43, 155–164 (2019). https://doi.org/10.1007/s40997-018-0146-0

    Article  Google Scholar 

  14. Parida, A.K., Maity, K.: Comparison the machinability of Inconel 718, Inconel 625 and Monel 400 in hot turning operation. Eng. Sci. Technol. an Int. J. 21(3), 364–370 (2018). https://doi.org/10.1016/j.jestch.2018.03.018

    Article  Google Scholar 

  15. Gandhi, A., Abhishek, K., Kumari, S.: Effect of speed on various machinability criteria in dry turning of nickel–iron–chromium-based superalloy. Adv. Intell. Syst. Comput. Intell Syst Comput 757, 407–414 (2019). https://doi.org/10.1007/978-3-319-70581-1

    Article  Google Scholar 

  16. Yadav, R.K., Abhishek, K., Mahapatra, S.S.: Simulation modelling practice and theory a simulation approach for estimating flank wear and material removal rate in turning of Inconel 718. Stimul. Model. Pract. Theory 52, 1–14 (2015). https://doi.org/10.1016/j.simpat.2014.12.004

    Article  Google Scholar 

  17. Miriyala, S.S., Mittal, P., Majumdar, S., Mitra, K.: Comparative study of surrogate approaches while optimizing computationally expensive reaction networks. Chem. Eng. Sci. 140, 44–61 (2016). https://doi.org/10.1016/j.ces.2015.09.030

    Article  Google Scholar 

  18. Miriyala, S.S., Subramanian, V., Mitra, K.: TRANSFORM-ANN for online optimization of complex industrial processes: casting process as case study. Eur. J. Oper. Res. 264(1), 294–309 (2018). https://doi.org/10.1016/j.ejor.2017.05.026

    Article  MathSciNet  Google Scholar 

  19. Miriyala, S.S., Mitra, K.: Multi-objective optimization of iron ore induration process using optimal neural networks. Mater. Manuf. Process. 35(5), 537–544 (2020). https://doi.org/10.1080/10426914.2019.1643476

    Article  Google Scholar 

  20. Yünlü, L., Çolak, O., Kurbanoǧlu, C.: Taguchi DOE analysis of surface integrity for high pressure jet assisted machining of Inconel 718. Proced CIRP 13, 333–338 (2014). https://doi.org/10.1016/j.procir.2014.04.056

    Article  Google Scholar 

  21. Mohan, M.; Dinbandhu; Shaikshavali, G.; Venugopal Goud, E.: Optimization of the machining parameters in turning En 9 steel using Taguchi method. Natl. Conf. Technol. Adv. Mech. Eng. 22–23 July 2016 Univ. Coll. Eng. Kakinada JNTUK Kakinada A.P. India, No. March, 65–68, 2016

  22. Pandey, A., Goyal, A., Meghvanshi, R.: Experimental investigation and optimization of machining parameters of aerospace material using Taguchi’s DOE approach. Mater. Today Proc. 4(8), 7246–7251 (2017). https://doi.org/10.1016/j.matpr.2017.07.053

    Article  Google Scholar 

  23. Gopal, P.M., Soorya Prakash, K.: Minimization of cutting force, temperature and surface roughness through GRA, TOPSIS and Taguchi techniques in end milling of mg hybrid MMC. Meas. J. Int. Meas. Confed. 116, 178–192 (2018). https://doi.org/10.1016/j.measurement.2017.11.011

    Article  Google Scholar 

  24. Sasikumar, C., Balamurugan, K., Rajendran, S., Naveenkumar, S.: Process parameter optimization in Jatropha methyl ester yield using Taguchi technique. Mater. Manuf. Process. 31(6), 701–706 (2016). https://doi.org/10.1080/10426914.2015.1048473

    Article  Google Scholar 

  25. Arunramnath, R., Thyla, P.R., Mahendrakumar, N., Ramesh, M., Siddeshwaran, A.: Multi-attribute optimization of end milling epoxy granite composites using TOPSIS. Mater. Manuf. Process. 34(5), 530–543 (2019). https://doi.org/10.1080/10426914.2019.1566960

    Article  Google Scholar 

  26. Kumari, S., Bandhu, D., Kumar, A., Yadav, R.K., Vivekananda, K.: Application of Utility Function Approach Aggregated with Imperialist Competitive Algorithm for Optimization of Turning Parameters of AISI D2 Steel, pp. 49–57. Springer, Singapore (2020)

    Google Scholar 

  27. Prajapati, V., Vora, J.J., Das, S., Abhishek, K.: Study of parametric influence and welding performance optimization during regulated metal deposition (RMDTM) using grey integrated with fuzzy Taguchi approach. J. Manuf. Process. 54, 286–300 (2020). https://doi.org/10.1016/j.jmapro.2020.03.017

    Article  Google Scholar 

  28. Kalirasu, S., Rajini, N., Rajesh, S., Jappes, J.T.W., Karuppasamy, K.: AWJM performance of jute/polyester composite using MOORA and analytical models. Mater. Manuf. Process. 32(15), 1730–1739 (2017). https://doi.org/10.1080/10426914.2017.1279314

    Article  Google Scholar 

  29. Kumar, Y., Singh, H.: Multi-response optimization in dry turning process using Taguchi’s approach and utility concept. Proced. Mater. Sci. 5, 2142–2151 (2014). https://doi.org/10.1016/j.mspro.2014.07.417

    Article  Google Scholar 

  30. Dash, S., Dutta, A.: Design of high-manganese nanostructured austenitic steel with particle swarm optimization. Mater. Manuf. Process. 35(6), 635–642 (2020). https://doi.org/10.1080/10426914.2019.1686520

    Article  Google Scholar 

  31. Nagaraju, S., Vasantharaja, P., Chandrasekhar, N., Vasudevan, M., Jayakumar, T.: Optimization of welding process parameters for 9Cr-1Mo steel using RSM and GA. Mater. Manuf. Process. 31(3), 319–327 (2016). https://doi.org/10.1080/10426914.2015.1025974

    Article  Google Scholar 

  32. Vijayakumar, K., Prabhaharan, G., Asokan, P., Saravanan, R.: Optimization of multi-pass turning operations using ant colony system. Int. J. Mach. Tools Manuf 43, 1633–1639 (2003). https://doi.org/10.1016/j.ijmachtools.2007.03.001

    Article  Google Scholar 

  33. Karnik, S.R., Gaitonde, V.N., Basavarajappa, S., Davim, J.P.: Multi-response optimization in drilling of glass epoxy polymer composites using simulated annealing approach. Mater. Sci. Forum 766, 123–141 (2013). https://doi.org/10.4028/www.scientific.net/MSF.766.123

    Article  Google Scholar 

  34. Rao, R.V., Savsani, V.J., Balic, J.: Teaching-learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems. Eng. Optim. 44(12), 1447–1462 (2012). https://doi.org/10.1080/0305215X.2011.652103

    Article  Google Scholar 

  35. Rao, R.V.: Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 7, 19–34 (2016). https://doi.org/10.5267/j.ijiec.2015.8.004

    Article  Google Scholar 

  36. Olakanmi, E.O.: Optimization of the quality characteristics of laser-assisted cold-sprayed (LACS) aluminum coatings with Taguchi design of experiments (DOE). Mater. Manuf. Process. 31(11), 1490–1499 (2016). https://doi.org/10.1080/10426914.2014.984306

    Article  Google Scholar 

  37. Rahang, M., Patowari, P.K.: Parametric optimization for selective surface modification in EDM using Taguchi analysis. Mater. Manuf. Process. 31(4), 422–431 (2016). https://doi.org/10.1080/10426914.2015.1037921

    Article  Google Scholar 

  38. Ridzuan, N., Adam, F., Yaacob, Z.: Screening of factor influencing wax deposition using full factorial experimental design. Pet. Sci. Technol. 34(1), 84–90 (2016). https://doi.org/10.1080/10916466.2015.1122625

    Article  Google Scholar 

  39. Rakić, T., Kasagić-Vujanović, I., Jovanović, M., Jančić-Stojanović, B., Ivanović, D.: Comparison of full factorial design, central composite design, and Box–Behnken design in chromatographic method development for the determination of fluconazole and its impurities. Anal. Lett. 47(8), 1334–1347 (2014). https://doi.org/10.1080/00032719.2013.867503

    Article  Google Scholar 

  40. Priyadarshi, D., Sharma, R.K.: Optimization for turning of Al-6061-SiC-Gr hybrid nanocomposites using response surface methodologies. Mater. Manuf. Process. 31(10), 1342–1350 (2016). https://doi.org/10.1080/10426914.2015.1070427

    Article  Google Scholar 

  41. Gupta, M.K., Sood, P.K., Sharma, V.S.: Machining parameters optimization of titanium alloy using response surface methodology and particle swarm optimization under minimum-quantity lubrication environment. Mater. Manuf. Process. 31(13), 1671–1682 (2016). https://doi.org/10.1080/10426914.2015.1117632

    Article  Google Scholar 

  42. Bagudanch, I., Vives-Mestres, M., Sabater, M., Garcia-Romeu, M.L.: Polymer incremental sheet forming process: temperature analysis using response surface methodology. Mater. Manuf. Process. 32(1), 44–53 (2017). https://doi.org/10.1080/10426914.2016.1176191

    Article  Google Scholar 

  43. Rao, S., Sethi, A., Das, A.K., Mandal, N., Kiran, P., Ghosh, R., Dixit, A.R., Mandal, A.: Fiber laser cutting of CFRP composites and process optimization through response surface methodology. Mater. Manuf. Process. 32(14), 1612–1621 (2017). https://doi.org/10.1080/10426914.2017.1279296

    Article  Google Scholar 

  44. Mohal, S., Kumar, H.: Parametric optimization of multiwalled carbon nanotube-assisted electric discharge machining of Al–10%SiCp metal matrix composite by response surface methodology. Mater. Manuf. Process. 32(3), 263–273 (2017). https://doi.org/10.1080/10426914.2016.1140196

    Article  Google Scholar 

  45. Wu, B.: Technical background. In: Reliability Analysis of Dynamic Systems, pp. 25–41. Elsevier (2013). https://doi.org/10.1016/B978-0-12-407711-9.00002-9

    Chapter  Google Scholar 

  46. Pantula, P.D., Mitra, K.: Towards efficient robust optimization using data based optimal segmentation of uncertain space. Reliab. Eng. Syst. Saf. Eng. Syst. Saf. 197, 106821 (2020). https://doi.org/10.1016/j.ress.2020.106821

    Article  Google Scholar 

  47. Inapakurthi, R.K., Pantula, P.D., Miriyala, S.S., Mitra, K.: Data driven robust optimization of grinding process under uncertainty. Mater. Manuf. Process. (2020). https://doi.org/10.1080/10426914.2020.1802042

    Article  Google Scholar 

  48. Soumitri, M.S., Majumdar, S., Mitra, K.: Optimization using ANN surrogates with optimal topology and sample size. IFAC-PapersOnLine 28, 1168–1173 (2015)

    Article  Google Scholar 

  49. Mitra, K., Majumder, S., Runkana, V.: Multiobjective Pareto optimization of an industrial straight grate iron ore induration process using an evolutionary algorithm. Mater. Manuf. Process. 24(3), 331–342 (2009). https://doi.org/10.1080/10426910802679428

    Article  Google Scholar 

  50. Pantula, P. D., Mitra, K.: An Evolutionary machine learning approach towards less conservative robust optimization. In: 2019 IEEE congress on evolutionary computation, CEC 2019 - Proceedings; Institute of Electrical and Electronics Engineers Inc., pp 2990–2997. 2019. https://doi.org/10.1109/CEC.2019.8790094.

  51. Pantula, P.D., Miriyala, S.S., Mitra, K.: KERNEL: enabler to build smart surrogates for online optimization and knowledge discovery. Mater. Manuf. Process. 32(10), 1162–1171 (2017). https://doi.org/10.1080/10426914.2016.1269918

    Article  Google Scholar 

  52. Banerjee, R., Bhattacharyya, B.C.: Evolutionary operation (EVOP) to optimize three-dimensional biological experiments. Biotechnol. Bioeng.. Bioeng. 41(1), 67–71 (1993). https://doi.org/10.1002/bit.260410109

    Article  Google Scholar 

  53. Lu, X., Wu, X.: A strategy of searching active factors in supersaturated screening experiments. J. Qual. Technol. 36(4), 392–399 (2004). https://doi.org/10.1080/00224065.2004.11980286

    Article  Google Scholar 

  54. Connolly, J.: On the use of response models in mixture experiments. Oecologia 72(1), 95–103 (1987). https://doi.org/10.1007/BF00385051

    Article  Google Scholar 

  55. Weekes, M. R.: PWB contamination & reliability DOE, SMTA Int. Conf. Proc., September 2001.

  56. Taiwo, A.E., Madzimbamuto, T.N., Ojumu, T.V.: Optimization of process variables for acetoin production in a bioreactor using Taguchi orthogonal array design. Heliyon 6(10), e05103 (2020). https://doi.org/10.1016/j.heliyon.2020.e05103

    Article  Google Scholar 

  57. Vinayak, H., Baghini, M.S., Apte, P.: Design and optimization of high precision CMOS voltage reference using Taguchi orthogonal array technique. In: 2011 International symposium on integrated circuits, ISIC 2011. pp 575–578. 2011. https://doi.org/10.1109/ISICir.2011.6131928

  58. Kansal, S., Verma, A.S., Kant, S., Pankaj, N.A.: Parametric study of sisal-epoxy resin composite treated in sodium bicarbonate solution using Taguchi orthogonal array. Int. J. Mater. Eng. Innov. 11(3), 264 (2020). https://doi.org/10.1504/ijmatei.2020.108886

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soni Kumari.

Ethics declarations

Conflict of interest

No conflict of interest among all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandhi, A., Kumari, S., Sunil Kumar, M. et al. Enhancing machining performance of Inconel 825 alloy using grey relation analysis and JAYA-TLBO optimization techniques. Int J Interact Des Manuf (2024). https://doi.org/10.1007/s12008-024-01810-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-024-01810-5

Keywords

Navigation