Skip to main content

Advertisement

Log in

Assessment of sustainability issues for the selection of materials and technologies during product design: a case study of lithium-ion batteries for electric vehicles

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

A methodology is developed for assessing relevant issues of the environmental, economic, and social dimensions of the modern sustainability concept. It is designed for evaluating and selecting materials and technologies during product development. Established approaches, i.e. environmental life cycle assessment, life cycle costing, social life cycle assessment, material flow analysis, and the “criticality” analysis of resources are used and adjusted according to the circumstances and limitations of the particular application. The assessment is applied to the use of lithium-ion batteries with nickel-manganese-cobalt cathode (Li-NMC) and with iron-phosphate cathode (LiFeP) in an electric vehicle, and compares the two options with each other. The results show an advantage for the Li-NMC battery regarding the global warming potential and life cycle costs. The LiFeP battery, however, turns out to be more beneficial with respect to the other emission-related impact categories. Further, the use of cobalt in Li-NMC vehicle batteries involves several disadvantages, such as a significant contribution towards the depletion of cobalt, the considerable risk of a supply shortage, and the risk of negative social aspects along its supply chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Klöpffer, W.: Life-cycle based methods for sustainable product development. Int. J. LCA. 8(3), 157–159 (2003)

    Article  Google Scholar 

  2. Klöpffer, W.: Life cycle sustainability assessment of products (with Comments by Helias A. Udo de Haes, p. 95). Int. J. LCA. 13(2), 89–96 (2008)

    Article  Google Scholar 

  3. Valdivia, S., Sonnemann, G., et al.: Towards a life cycle sustainability assessment. UNEP/SETAC Life Cycle Initiative (2011)

  4. Volkswagen, A.G.: Der Passat. Umweltprädikat—Hintergrundbericht [Online]. http://www.volkswagenag.com/content/vwcorp/info_center/de/publications/2008/04/hintergrundbericht.bin.html/binarystorageitem/file/Passat_UP_Hintergrundbericht_D.pdf. Wolfsburg, (2007). Accessed 13 Oct 2015

  5. Volkswagen, A.G.: Der e-Golf. Umweltprädikat—Hintergrundbericht [Online]. http://www.volkswagen.de/content/medialib/vwd 4/de/Volkswagen/Nachhaltigkeit/service/download/umweltpraedi kate/e-golf-umweltpraedikat-deutsch/_jcr_content/renditions/ren dition.file/egolf2014_up_d_1007.pdf. Wolfsburg (2014). Accessed 13 Oct 2015

  6. Daimler, A.G.: Life cycle. Umwelt-Zertifikat für den neuen SLK [Online]. https://www.mercedes-benz.de/content/media_library/ hq/hq_mpc_reference_site/passenger_cars_ng/new_cars/models/ slk-class/_r172/facts/05-2011/slk-class_r172_facts_nvironment_5 927_de_05-2011_pdf.object-Single-MEDIA.download.tmp/slk-cl ass_r172_facts_nvironment_5927_de_05-2011.pdf. Stuttgart (2010). Accessed 13 Oct 2015

  7. Daimler, A.G.: Life cycle. Umwelt-Zertifikat für die neue B-Klasse [Online]. https://www.mercedes-benz.de/content/media_library/hq/hq_mpc_reference_site/passenger_cars_ng/new_cars/models/b-class/w246/facts/03-2012/b-class_w246_environment_5597_de_03-2012_pdf.object-Single-MEDIA.download.tmp/b-class_w246_environment_5597_de_03-2012.pdf. Stuttgart (2011). Accessed 13 Oct 2015

  8. Renault.: Fluence and Fluence Z.E. Life Cycle Assessment [Online]. https://group.renault.com/wp-content/uploads/2014/09/fluence-acv-2011.pdf. Stuttgart (2011). Accessed 13 Oct 2015

  9. BMW Group.: Environmental Certification BMW i3 [Online]. http://www.bmwgroup.com/com/en/_common/_pdf/Enviromental_Certification_i3.pdf. Munich (2013). Accessed 13 Oct 2015

  10. BMW Group.: Environmental Certification BMW i8. http://www.bmwgroup.com/com/en/_common/_pdf/Enviromental_Certification_i8.pdf. Munich (2014). Accessed 13 Oct 2015

  11. van Oers, L., de Koning, A., Guinée, J.B., Huppes, G.: Abiotic resource depletion in LCA [Online]. http://www.leidenuniv.nl/cml/ssp/projects/lca2/report_abiotic_depletion_web.pdf (2002). Accessed 2 Feb 2015

  12. Schneider, L., Berger, M., Finkbeiner, M.: The anthropogenic stock extended abiotic depletion potential (AADP) as a new parameterisation to model the depletion of abiotic resources. Int. J. LCA. 16, 929–936 (2011)

    Article  Google Scholar 

  13. European Commission, Joint Research Centre, Institute for Environment and Sustainability.: International Reference Life Cycle Data System (ILCD) Handbook—Recommendations for Life Cycle Impact Assessment in the European context, Luxemburg (2011)

  14. Hunkeler, D., Lichtenvort, K., Rebitzer, G., Ciroth, A.: Environmental Life Cycle Costing. SETAC Books/CRC Press, Pensacola/Boca Raton (2008)

    Book  Google Scholar 

  15. Swarr, T.E., Hunkeler, D., Klöpffer, W., Pesonen, H.-L., Ciroth, A., Brent, A.C., Pagan, R.: Environmental Life Cycle Costing: A Code of Practice. SETAC Books, Pensacola (2011)

    Google Scholar 

  16. Jarass, L., Obermair, G.M., Voigt, W.: Windenergie–Zuverlässige Integration in die Energieversorgung. Springer, Berlin/Heidelberg (2009)

    Google Scholar 

  17. Steen, B.: A systematic approach to environmental priority strategies in product development (EPS).: Version 2000 [Online]. Centre for Environmental Assessment of Products and Material Systems, Chalmers University of Technology. http://msl1.mit.edu/esd123_2001/pdfs/EPS2000.pdf; http://msl1.mit.edu/esd123_2001/pdfs/EPS1999_5.pdf. Accessed 5 Jan 2015

  18. Dewulf, J., van Langenhove, H.: Renewables-Based Technology—Sustainability Assessment. Wiley, West Sussex (2006)

    Book  Google Scholar 

  19. National Research Council.: Minerals, Critical Minerals, and the US Economy. The National Academies Press, Washington D.C. (2007)

  20. Morley, N., Eatherley, D.: Material Security—Ensuring Resource Availability for the UK Economy. C-Tech Innovation Ltd., Chester (2008)

    Google Scholar 

  21. European Commission.: Critical raw materials for the EU [Online]. http://www.euromines.org/files/what-we-do/sustainable-development-issues/2010-report-critical-raw-materials-eu.pdf (2010). Accessed 5 Jan 2015

  22. Erdmann, L., Behrendt, S., Feil, M.: Kritische Rohstoffe für Deutschland—Abschlussbericht[Online]. Institut für Zukunftsstudien und Technologiebewertung (IZT), Berlin. http://www.izt.de/fileadmin/publikationen/54416.pdf (2011). Accessed 5 Jan 2015

  23. Moss, R.L., Tzimas, E., Kara, H., Willis, P., Kooroshy, J.: Critical Metals in Strategic Energy Technologies—Assessing Rare Metals as Supply-Chain Bottlenecks in Low-Carbon Energy Technologies [Online]. European Commission, Joint Research Centre, Institute for Energy and Transport, Petten, The Netherlands. http://setis.ec.europa.eu/system/files/CriticalMetalsinStrategicEnergyTechnologies-def.pdf (2011). Accessed 5 Jan 2015

  24. Graedel, T.E., et al.: Methodology of metal criticality determination. Environ. Sci. Technol. 46, 1063–1070 (2012)

    Article  Google Scholar 

  25. European Commission.: Report on Critical Raw Materials for the EU [Online]. http://ec.europa.eu/DocsRoom/documents/10010/attachments/1/translations/en/renditions/native, http://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical/index_en.htm (2014). Accessed 5 Jan 2016

  26. Benoît, C., Mazijn, B, et al.: Guidelines for Social Life Cycle Assessment of Products. UNEP/SETAC Life Cycle Initiative (2009)

  27. Benoît, C., Aulisio, D., Overraker, S., Hallisey-Kepka, C., Tamblyn, N., Norris, G.A.: Social Scoping Prototype—Report Product Category 2—Laptop Computer [Online]. The Sustainability Consortium and New Earth. http://socialhotspot.org/wp-content/uploads/2013/03/Social-Hotspot-Report-Laptop-lowRez.pdf (2012). Accessed 4 Sep 2014

  28. Purdue University, Department of Agricultural Economics.: Center for Global Trade Analysis [Online]. http://www.gtap.agecon.purdue.edu/databases/contribute/detailedsector.asp. Accessed 30 Nov 2015

  29. Benoit-Norris, C., Aulisio Cavan, D., Norris, G.: Identifying social impacts in product supply chains: overview and application of the social hotspot database. Sustainability 4(12), 1946–1965 (2012)

    Article  Google Scholar 

  30. New Earth.: Social Hotspots Database project [Online]. http://www.socialhotspot.org. Accessed 30 Nov 2015

  31. Buchert, M., Jenseit, W., Merz, C., Schüler, D.: Ökobilanz zum “Recycling von Lithium-Ionen-Batterien” (LithoRec) [Online]. Öko-Institut e.V., Darmstadt. http://www.oeko.de/oekodoc/1500/2011-068-de.pdf (2011). Accessed 5 Jan 2016

  32. Reuter, B., Riedl, J., Bradshaw, A.M., Hamacher, T., Lienkamp, M.: Future Resource Availability for the Production of Lithium-Ion Vehicle Batteries. In: Proceedings of the Conference on Future Automotive Technology, Munich, Germany (2014)

  33. Georgi-Maschler, T., Friedrich, B., Weyhe, R., Heegn, H., Rutz, M.: Development of a recycling process for Li-ion batteries. J. Power Sources. 207, 173–182 (2012)

    Article  Google Scholar 

  34. U.S. Geological Survey.: Mineral commodity summaries 2014 [Online]. U.S. Geological Survey: Reston, Virginia. http://minerals.usgs.gov/minerals/pubs/mcs/2014/mcs2014.pdf (2014). Accessed 5 Jan 2015

  35. Kochhan, R., Fuchs, S., Reuter, B., Burda, P., Matz, S., Lienkamp, M.: An Overview of Costs for Vehicle Components, Fuels and Greenhouse Gas Emissions [Online]. Institute of Automotive Technology, Technische Universität München. https://www.researchgate.net/publication/260339436_An_Overview_of_Costs_for_Vehicle_Components_Fuels_and_Greenhouse_Gas_Emissions (2014). Accessed 5 Jan 2015

  36. Lienkamp, M.: Status Elektromobilität 2014 [Online]. Institute of Automotive Technology, Technische Universität München. https://www.researchgate.net/publication/262643317_Status_Elektromobilitat_2014 (2014). Accessed 30 Jul 2014

  37. Vodermair, C.: Kostenanalyse und -Modellierung im elektrischen Antriebsstrang. Diplomarbeit, Technische Universität München, Munich, Germany (2011)

  38. United Nations Development Programme, Human Development Reports.: Human Development Report 2015 [Online]. http://hdr.undp.org/sites/default/files/hdr_2015_statistical_annex.pdf. Accessed 5 Jan 2016

Download references

Acknowledgments

I want to thank Prof. Markus Lienkamp, Prof. Thomas Hamacher, and Prof. Alexander M. Bradshaw for their enduring support. The work environment and the numerous valuable discussions they provided were a highly fruitful basis for successfully accomplishing this complex research project and for writing the related PhD thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Reuter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reuter, B. Assessment of sustainability issues for the selection of materials and technologies during product design: a case study of lithium-ion batteries for electric vehicles. Int J Interact Des Manuf 10, 217–227 (2016). https://doi.org/10.1007/s12008-016-0329-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-016-0329-0

Keywords

Navigation