Skip to main content
Log in

A methodology to form families of products by applying fuzzy logic

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

An Erratum to this article was published on 04 June 2014

Abstract

More and more companies are designing product families with the aim of offering a wider variety of products and at the same time reducing product cost by standardizing components and processes, making mass customization a reality. This paper proposes a comprehensive methodology to form product families taking advantage of the ability of the fuzzy logic to tackle uncertainties. In this methodology, fuzzy logic is considered as a valuable tool to improve the decision-making process due to its ability to manage information more accurately than binary logic. This methodology is presented and explained through an illustrative application to demonstrate its applicability and practicality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Agard, B., Barajas, M.: The use of fuzzy logic in product family development: literature review and opportunities. J. Intell. Manuf. 23(5), 1445–1462 (2012)

  2. Agard, B., Kusiak, A.: Data-mining based methodology for the design of product families. Int. J. Prod. Res. 42(15), 2955–2969 (2004)

  3. Barajas, M., Agard, B.: Selection of products based on customer preferences applying fuzzy logic. Int. J. Interact. Des. Manuf. 5(4), 235–242 (2011)

  4. Barajas, M., Agard, B.: Improved fuzzy ranking procedure for decision making in product design. Int. J. Prod. Res. 48(18), 5433–5453 (2010)

    Article  MATH  Google Scholar 

  5. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithm (1981). ISBN 0-306-40671-3

  6. Chen, C., Wang, L.: Product platform design through clustering analysis and information theoretical approach. Int. J. Prod. Res. 46(15), 4259–4284 (2008b)

    Article  MATH  Google Scholar 

  7. Chen, L.-H., Kao, C., Kuo, S., Wang, T.-Y., Jang, Y.-C.: Productivity diagnosis via fuzzy clustering and classification: an application to machinery industry. Omega 24(3), 309–319 (1996)

    Article  Google Scholar 

  8. Chen, Y., Tang, J., Fung, R.Y.K., Ren, Z.: Fuzzy regression-based mathematical programming model for quality function deployment. Int. J. Prod. Res. 42(5), 1009–1027 (2004)

    Article  MATH  Google Scholar 

  9. Da Cunha, C., Agard, B., Kusiak, A.: Selection of modules for mass customization. Int. J. Prod. Res. 48(5), 1439–1454 (2010)

    Article  Google Scholar 

  10. Dai, Z.: Robust product family design. Thesis (PhD), University of Illinois (2005)

  11. Dai, Z., Scott, M.J.: Effective product family design using preference aggregation. J. Mech. Des. Trans. ASME 128(4), 659–667 (2006)

    Article  Google Scholar 

  12. Dai, Z., Scott, M.J.: Product platform design through sensitivity analysis and cluster analysis. J. Intell. Manuf. 18(1), 97–113 (2007)

    Article  Google Scholar 

  13. Doré, R., Pailhes, J., Fischer, X., Nadeau, J.P.: Identification of sensory variables towards the integration of user requirements into preliminary design. Int. J. Ind. Ergon. 37(1), 1–11 (2007)

    Article  Google Scholar 

  14. Fellini, R., Kokkolaras, M., Papalambros, P., Perez-Duarte, A.: Platform selection under performance bounds in optimal design of product families. J. Mech. Des. Trans. ASME 127(4), 524–535 (2005)

    Article  Google Scholar 

  15. Fellini, R.A.: A model-based methodology for product family design. Thesis (PhD), University of Michigan (2003)

  16. Fischer, X., Fadel, G., Ledoux, Y.: Interactive product design. In: Research in Interactive Design, vol. 3, pp. 45–84. Springer, Paris (2011)

  17. Fung, R.Y.K., Law, D.S.T., Ip, W.H.: Design targets determination for inter-dependent product attributes in qfd using fuzzy inference. Integr. Manuf. Syst. 10(6), 376–384 (1999)

    Article  Google Scholar 

  18. Gao, F., Xiao, G., Chen, J.-J.: Product interface reengineering using fuzzy clustering. Comput. Aided Des. 40(4), 439–446 (2008)

    Article  Google Scholar 

  19. Hsiao, S.-W., Liu, E.: A structural component-based approach for designing product family. Comput. Ind. 56(1), 13–28 (2005)

    Article  MathSciNet  Google Scholar 

  20. Huang, G.Q., Simpson, T.W., Pine II, B.J.: The power of product platforms in mass customisation. Int. J. Mass Cust. 1(1), 1–13 (2005)

    Article  Google Scholar 

  21. Ishihara, S., Ishihara, K., Nagamachi, M., Matsubara, Y.: An automatic builder for a kansei engineering expert system using self-organizing neural networks. Int. J. Ind. Ergon. 15(1), 13–24 (1995)

    Article  Google Scholar 

  22. Jiao, J., Tseng, M.M.: Understanding product family for mass customization by developing commonality indices. J. Eng. Des. 11(3), 225–243 (2000)

    Article  Google Scholar 

  23. Kohli, R., Sukumar, R.: Heuristic for product line design using conjoint analysis. Manag. Sci. 36(12), 1464–1477 (1990)

    Article  Google Scholar 

  24. Kumar, D., Chen, W., Simpson, T.W.: A market-driven approach to product family design. Int. J. Prod. Res. 47(1), 71–104 (2009)

    Article  Google Scholar 

  25. Kusiak, A.: Engineering Design: Products, Processes, and Systems. Academic Press, San Diego (1999)

    Google Scholar 

  26. Lingling, L., Quanming, Z., Zhigang, L., Huijuan, Z.: Product design based on clustering analyzing and fuzzy recognition. In: IEEE Conference on Cybernetics and Intelligent Systems, June 7–9, Bangkok, Thailand (2006)

  27. Mejía-Gutiérrez, R., Cálad-Álvarez, A., Ruiz-Arenas, S.: A Multi-agent Approach for Engineering Design Knowledge Modelling. Knowlege-Based and Intelligent Information and Engineering Systems, pp. 601–610. Springer, Berlin (2011)

  28. Mejia-Gutierrez, R., Fischer, X., Bennis, F.: Knowledge modelling for supporting decision making in optimal distributed design process. In: IEEE International Conference on Industrial Engineering and Engineering Management, Dec 2–4, Singapore, pp. 2076–2080 (2007)

  29. Meng, X., Jiang, Z., Huang, G.Q.: On the module identification for product family development. Int. J. Adv. Manuf. Technol. 35(1—-2), 26–40 (2007)

    Article  Google Scholar 

  30. Messac, A., Martinez, M.P., Simpson, T.W.: Introduction of a product family penalty function using physical programming. J. Mech. Des. Trans. ASME 124(2), 164–172 (2002)

    Article  Google Scholar 

  31. Mishra, A.K.: Optimization models for component commonality in assemble-to-order systems. Thesis (PhD), University of Pittsburgh (1999)

  32. Moon, S.K., Kumara, S.R.T., Simpson, T.W.: Data mining and fuzzy clustering to support product family design. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Sept. 10–13, Philadelphia, Pennsylvania, USA (2006)

  33. Moorthy, K.S.: Market segmentation, self-selection, and product line design. Mark. Sci. 3(4), 288–307 (1984)

    Article  Google Scholar 

  34. Nagamachi, M.: Kansei engineering as a powerful consumer-oriented technology for product development. Appl. Ergon. 33(3), 289–294 (2002)

    Article  Google Scholar 

  35. Ninan, J.A.: A platform cascading method for scale based product family design. Thesis (PhD), University of Oklahoma (2007)

  36. Petiot, J.F., Grognet, S.: A multidimensional scaling approach for product design and preference modeling. In: IEEE International Conference on Systems, Man and Cybernetics, Oct 6–9, Yasmine, Hammamet, Tunisia (2002)

  37. Petiot, J.F., Grognet, S.: Product design: a vectors field-based approach for preference modelling. J. Eng. Des. 17(03), 217–233 (2006)

    Article  Google Scholar 

  38. Sered, Y., Reich, Y.: Standardization and modularization driven by minimizing overall process effort. Comput. Aided Des. 38(5), 405–416 (2006)

    Article  Google Scholar 

  39. Simpson, T.W.: Product platform design and customization: status and promise. Artif. Intell. Eng. Des. Anal. Manuf. 18(1), 3–20 (2004)

    Article  Google Scholar 

  40. Tong, L.I., Su, C.T.: Optimizing multi-response problems in the Taguchi method by fuzzy multiple attribute decision making. Qual. Reliab. Eng. Int. 13(1), 25–34 (1997)

  41. Tseng, M.M., Jiao, J.: A module identification approach to the electrical design of electronic products by clustering analysis of the design matrix. Comput. Ind. Eng. 33(1–2), 229–233 (1997)

  42. Vanegas, L.V., Labib, A.W.: A fuzzy quality function deployment (FQFD) model for deriving optimum targets. Int. J. Prod. Res. 39(1), 99–120 (2001)

  43. Wang, J.: Fuzzy outranking approach to prioritize design requirements in quality function deployment. Int. J. Prod. Res. 37(4), 899–916 (1999)

    Article  MATH  Google Scholar 

  44. Wang, H.J., Zhang, Q., Zhao, T.T.: A SA-based method for developing modular product family. In: International Conference on Machine Learning and Cybernetics, Aug 18–21, Guangzhou, China (2005)

  45. Xu, R., Wunsch II, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 3,645–3,678 (2005)

    Article  Google Scholar 

  46. Ye, X., Gershenson, J.K.: Attribute-based clustering methodology for product family design. J. Eng. Des. 19(6), 571–586 (2008)

    Article  Google Scholar 

  47. Yu, L., Wang, L.: Two-stage product definition for mass customization. In: 5th IEEE International Conference on Industrial Informatics, June 23–27, Vienna, Italy, pp. 699–704 (2007)

  48. Zhang, Q., Wang, Y., Yang, Y.: Fuzzy multiple attribute decision making with eight types of preference information on alternatives. In: IEEE Symposium on Computational Intelligence in Multicriteria Decision Making (MCDM 2007), pp. 288–293 (2007)

  49. Zhu, B., Wang, Z., Yang, H., Li, H.: Study on approach to fuzzy product configuration based on vague customer requirements. Mater. Sci. Forum 532–533, 1068–1071 (2006)

    Article  Google Scholar 

  50. Zhu, B., Wang, Z., Yang, H., Mo, R., Zhao, Y.: Applying fuzzy multiple attribute decision making for product configuration. J. Intell. Manuf. 19(5), 591–598 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC). This research was also supported by the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Agard.

Appendix

Appendix

See Tables 21, 22, 23, 24.

Table 21 Customer preferences for each product feature
Table 22 Fuzzy preference relation of cluster 2
Table 23 Fuzzy preference relation of cluster 3
Table 24 Fuzzy preference relation of customer X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajaras, M., Agard, B. A methodology to form families of products by applying fuzzy logic. Int J Interact Des Manuf 9, 253–267 (2015). https://doi.org/10.1007/s12008-014-0230-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-014-0230-7

Keywords

Navigation