Skip to main content
Log in

Hip Ontogenesis: How Evolution, Genes, and Load History Shape Hip Morphotype and Cartilotype

  • Symposium: ABJS Carl T. Brighton Workshop on Hip Preservation Surgery
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Developmental hip disorders (DHDs), eg, developmental dysplasia of the hip, slipped capitis femoris epiphysis, and femoroacetabular impingement, can be considered morphology variants of the normal hip. The femoroacetabular morphology of DHD is believed to induce osteoarthritis (OA) through local cumulative mechanical overload acting on genetically controlled patterning systems and subsequent damage of joint structures. However, it is unclear why hip morphology differs between individuals with seemingly comparable load histories and why certain hips with DHD progress to symptomatic OA whereas others do not.

Questions/Purposes

We asked (1) which mechanical factors influence growth and development of the proximal femur; and (2) which genes or genetic mechanisms are associated with hip ontogenesis.

Methods

We performed a systematic literature review of mechanical and genetic factors of hip ontogeny. We focused on three fields that in recent years have advanced our knowledge of adult hip morphology: imaging, evolution, and genetics.

Where Are We Now?

Mechanical factors can be understood in view of human evolutionary peculiarities and may summate to load histories conducive to DHD. Genetic factors most likely act through multiple genes, each with modest effect sizes. Single genes that explain a DHD are therefore unlikely to be found. Apparently, the interplay between genes and load history not only determines hip morphotype, but also joint cartilage robustness (“cartilotype”) and resistance to symptomatic OA.

Where Do We Need to Go?

We need therapies that can improve both morphotype and cartilotype.

How Do We Get There?

Better phenotyping, improving classification systems of hip morphology, and comparative population studies can be done with existing methods. Quantifying load histories likely requires new tools, but proof of principle of modifying morphotype in treatment of DDH and of cartilotype with exercise is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agricola R, Bessems JH, Ginai AZ, Heijboer MP, van der Heijden RA, Verhaar JA, Weinans H, Waarsing JH. The development of cam-type deformity in adolescent and young male soccer players. Am J Sports Med. 2012;40:1099–1106.

    Article  PubMed  Google Scholar 

  2. Anemone RL. The VCL hypothesis revisited: patterns of femoral morphology among quadrupedal and saltatorial prosimian primates. Am J Phys Anthropol. 1990;83:373–393.

    Article  PubMed  CAS  Google Scholar 

  3. Back W, Schamhardt HC, Savelberg HH, van den Bogert AJ, Bruin G, Hartman W, Barneveld A. How the horse moves: 2. Significance of graphical representations of equine hind limb kinematics. Equine Vet J. 1995;27:39–45.

    Article  PubMed  CAS  Google Scholar 

  4. Baker JJ, Searight KJ, Atzeva Stump M, Kehrer MB, Shanafelt C, Graham E, Smith TD. Hip Anatomy and Ontogeny of Lower Limb Musculature in Three Species of Nonhuman Primates. Anatomy Research International, Hindawi Publishing Corporation; 2011. Available at: http://www.hindawi.com/journals/ari/2011/580864/. Accessed July 1, 2012.

  5. Baker-Lepain JC, Lynch JA, Parimi N, McCulloch CE, Nevitt MC, Corr M, Lane NE. Variant alleles of the WNT antagonist FRZB are determinants of hip shape and modify the relationship between hip shape and osteoarthritis. Arthritis Rheum. 2012;64:1457–1465.

    Article  PubMed  Google Scholar 

  6. Bardakos NV, Villar RN. Predictors of progression of osteoarthritis in femoroacetabular impingement: a radiological study with a minimum of ten years follow-up. J Bone Joint Surg Br. 2009;91:162–169.

    Article  PubMed  CAS  Google Scholar 

  7. Bastow ER, Lamb KJ, Lewthwaite JC, Osborne AC, Kavanagh E, Wheeler-Jones CP, Pitsillides AA. Selective activation of the MEK-ERK pathway is regulated by mechanical stimuli in forming joints and promotes pericellular matrix formation. J Biol Chem. 2005;280:11749–11758.

    Article  PubMed  CAS  Google Scholar 

  8. Beaule PE, Zaragoza E, Motamedi K, Copelan N, Dorey FJ. Three-dimensional computed tomography of the hip in the assessment of femoroacetabular impingement. J Orthop Res. 2005;23:1286–1292.

    PubMed  Google Scholar 

  9. Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech. 1993;26:969–990.

    Article  PubMed  CAS  Google Scholar 

  10. Bergmann G, Graichen F, Rohlmann A. Hip joint forces in sheep. J Biomech. 1999;32:769–777.

    Article  PubMed  CAS  Google Scholar 

  11. Bonneau N, Simonis C, Seringe R, Tardieu C. Study of femoral torsion during prenatal growth: interpretations associated with the effects of intrauterine pressure. Am J Phys Anthropol. 2011;145:438–445.

    Article  PubMed  Google Scholar 

  12. Bos SD, Slagboom PE, Meulenbelt I. New insights into osteoarthritis: early developmental features of an ageing-related disease. Curr Opin Rheumatol. 2008;20:553–559.

    Article  PubMed  Google Scholar 

  13. Browne D. Congenital Deformities of mechanical origin: section for the study of disease in children. Proc Royal Soc Med. 1936;29:1409–1431.

    CAS  Google Scholar 

  14. Burr DB, Robling AG, Turner CH. Effects of biomechanical stress on bones in animals. Bone. 2002;30:781–786.

    Article  PubMed  Google Scholar 

  15. Carter DR, Orr TE, Fyhrie DP, Schurman DJ. Influences of mechanical stress on prenatal and postnatal skeletal development. Clin Orthop Relat Res. 1987;219:237–250.

    PubMed  Google Scholar 

  16. Daans M, Luyten FP, Lories RJ. GDF5 deficiency in mice is associated with instability-driven joint damage, gait and subchondral bone changes. Ann Rheum Dis. 2011;70:208–213.

    Article  PubMed  Google Scholar 

  17. De Pellegrin M, Moharamzadeh D. Developmental dysplasia of the hip in twins: the importance of mechanical factors in the etiology of DDH. J Pediatr Orthop. 2010;30:774–778.

    Article  PubMed  Google Scholar 

  18. Dickson JW. Pierre Le Damany on congenital dysplasia of the hip. Proc Royal Soc Med. 1969;62:575–577.

    CAS  Google Scholar 

  19. Doherty M, Courtney P, Doherty S, Jenkins W, Maciewicz RA, Muir K, Zhang W. Nonspherical femoral head shape (pistol grip deformity), neck shaft angle, and risk of hip osteoarthritis: a case-control study. Arthritis Rheum. 2008;58:3172–3182.

    Article  PubMed  Google Scholar 

  20. Doran DM. Ontogeny of locomotion in mountain gorillas and chimpanzees. J Hum Evol. 1997;32:323–344.

    Article  PubMed  CAS  Google Scholar 

  21. Drachman DB, Sokoloff L. The role of movement in embryonic joint formation. Dev Biol. 1966;14:401–420.

    Article  Google Scholar 

  22. Dudda M, Albers C, Mamisch TC, Werlen S, Beck M. Do normal radiographs exclude asphericity of the femoral head-neck junction? Clin Orthop Relat Res. 2009;467:651–659.

    Article  PubMed  Google Scholar 

  23. Dudda M, Kim YJ, Zhang Y, Nevitt MC, Xu L, Niu J, Goggins J, Doherty M, Felson DT. Morphologic differences between the hips of Chinese women and white women: could they account for the ethnic difference in the prevalence of hip osteoarthritis? Arthritis Rheum. 2011;63:2992–2999.

    Article  PubMed  Google Scholar 

  24. Ganz R, Leunig M, Leunig-Ganz K, Harris WH. The etiology of osteoarthritis of the hip: an integrated mechanical concept. Clin Orthop Relat Res. 2008;466:264–272.

    Article  PubMed  Google Scholar 

  25. Goldring MB, Tsuchimochi K, Ijiri K. The control of chondrogenesis. J Cell Biochem. 2006;97:33–44.

    Article  PubMed  CAS  Google Scholar 

  26. Goodman DA, Feighan JE, Smith AD, Latimer B, Buly RL, Cooperman DR. Subclinical slipped capital femoral epiphysis. Relationship to osteoarthrosis of the hip. J Bone Joint Surg Am. 1997;79:1489–1497.

    PubMed  CAS  Google Scholar 

  27. Gosvig KK, Jacobsen S, Palm H, Sonne-Holm S, Magnusson E. A new radiological index for assessing asphericity of the femoral head in cam impingement. J Bone Joint Surg Br. 2007;89:1309–1316.

    Article  PubMed  CAS  Google Scholar 

  28. Gosvig KK, Jacobsen S, Sonne-Holm S, Palm H, Troelsen A. Prevalence of malformations of the hip joint and their relationship to sex, groin pain, and risk of osteoarthritis: a population-based survey. J Bone Joint Surg Am. 2010;92:1162–1169.

    Article  PubMed  Google Scholar 

  29. Gregory JS, Waarsing JH, Day J, Pols HA, Reijman M, Weinans H, Aspden RM. Early identification of radiographic osteoarthritis of the hip using an active shape model to quantify changes in bone morphometric features: can hip shape tell us anything about the progression of osteoarthritis? Arthritis Rheum. 2007;56:3634–3643.

    Article  PubMed  Google Scholar 

  30. Hack K, Di Primio G, Rakhra K, Beaule PE. Prevalence of cam-type femoroacetabular impingement morphology in asymptomatic volunteers. J Bone Joint Surg Am. 2010;92:2436–2444.

    Article  PubMed  Google Scholar 

  31. Hadley NA, Brown TD, Weinstein SL. The effects of contact pressure elevations and aseptic necrosis on the long-term outcome of congenital hip dislocation. J Orthop Res. 1990;8:504–513.

    Article  PubMed  CAS  Google Scholar 

  32. Harila V, Valkama M, Sato K, Tolleson S, Hanis S, Kau CH, Pirttiniemi P. Occlusal asymmetries in children with congenital hip dislocation. Eur J Orthod. 2012;34:307–311.

    Article  PubMed  Google Scholar 

  33. Harris WH. Etiology of osteoarthritis of the hip. Clin Orthop Relat Res. 1986;213:20–33.

    PubMed  Google Scholar 

  34. Hartofilakidis G, Bardakos NV, Babis GC, Georgiades G. An examination of the association between different morphotypes of femoroacetabular impingement in asymptomatic subjects and the development of osteoarthritis of the hip. J Bone Joint Surg Br. 2011;93:580–586.

    Article  PubMed  CAS  Google Scholar 

  35. Heegaard JH, Beaupre GS, Carter DR. Mechanically modulated cartilage growth may regulate joint surface morphogenesis. J Orthpo Res. 1999;17:509–517.

    Article  CAS  Google Scholar 

  36. Hoaglund FT, Shiba R, Newberg AH, Leung KY. Diseases of the hip. A comparative study of Japanese Oriental and American white patients. J Bone Joint Surg Am. 1985;67:1376–1383.

    PubMed  CAS  Google Scholar 

  37. Inoue K, Wicart P, Kawasaki T, Huang J, Ushiyama T, Hukuda S, Courpied J. Prevalence of hip osteoarthritis and acetabular dysplasia in French and Japanese adults. Rheumatology (Oxford). 2000;39:745–748.

    Article  CAS  Google Scholar 

  38. Ito K, Minka MA 2nd, Leunig M, Werlen S, Ganz R. Femoroacetabular impingement and the cam-effect. A MRI-based quantitative anatomical study of the femoral head-neck offset. J Bone Joint Surg Br. 2001;83:171–176.

    Article  PubMed  CAS  Google Scholar 

  39. Jazrawi LM, Alaia MJ, Chang G, Fitzgerald EF, Recht MP. Advances in magnetic resonance imaging of articular cartilage. J Am Acad Orthop Surg. 2011;19:420–429.

    PubMed  Google Scholar 

  40. Jouve JL, Glard Y, Garron E, Piercecchi MD, Dutour O, Tardieu C, Bollini G. Anatomical study of the proximal femur in the fetus. J Pediatr Orthop B. 2005;14:105–110.

    Article  PubMed  Google Scholar 

  41. Kahn J, Shwartz Y, Blitz E, Krief S, Sharir A, Breitel DA, Rattenbach R, Relaix F, Maire P, Rountree RB, Kingsley DM, Zelzer E. Muscle contraction is necessary to maintain joint progenitor cell fate. Dev Cell. 2009;16:734–743.

    Article  PubMed  CAS  Google Scholar 

  42. Kavanagh E, Church VL, Osborne AC, Lamb KJ, Archer CW, Francis-West PH, Pitsillides AA. Differential regulation of GDF-5 and FGF-2/4 by immobilisation in ovo exposes distinct roles in joint formation. Dev Dyn. 2006;235:826–834.

    Article  PubMed  CAS  Google Scholar 

  43. Kim YH. Relationship between the sphericity of femoral head-acetabulum and the low incidence of primary osteoarthritis of the hip joint in Koreans. Yonsei Med J. 1989;30:280–287.

    PubMed  CAS  Google Scholar 

  44. Laborie LB, Lehmann TG, Engesaeter IO, Eastwood DM, Engesaeter LB, Rosendahl K. Prevalence of radiographic findings thought to be associated with femoroacetabular impingement in a population-based cohort of 2081 healthy young adults. Radiology. 2011;260:494–502.

    Article  PubMed  Google Scholar 

  45. Lane NE, Lin P, Christiansen L, Gore LR, Williams EN, Hochberg MC, Nevitt MC. Association of mild acetabular dysplasia with an increased risk of incident hip osteoarthritis in elderly white women: the study of osteoporotic fractures. Arthritis Rheum. 2000;43:400–404.

    Article  PubMed  CAS  Google Scholar 

  46. Lango Allen H, Estrada K, Lettre G, Berndt SI. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010;467:832–838.

    Google Scholar 

  47. Larsen LJ, Schottstaedt ER, Bost FC. Multiple congenital dislocations associated with characteristic facial abnormality. J Pediatr. 1950;37:574–581.

    Article  PubMed  CAS  Google Scholar 

  48. Le Damany P. [The Congenital Hip Dislocation] [in French]. Paris, France: Masson; 1923.

    Google Scholar 

  49. Leunig M, Casillas MM, Hamlet M, Hersche O, Notzli H, Slongo T, Ganz R. Slipped capital femoral epiphysis: early mechanical damage to the acetabular cartilage by a prominent femoral metaphysis. Acta Orthop Scand. 2000;71:370–375.

    Article  PubMed  CAS  Google Scholar 

  50. Loder RT. The demographics of slipped capital femoral epiphysis. An international multicenter study. Clin Orthop Relat Res. 1996;322:8–27.

    PubMed  Google Scholar 

  51. Loder RT, Nechleba J, Sanders JO, Doyle P. Idiopathic slipped capital femoral epiphysis in Amish children. J Bone Joint Surg Am. 2005;87:543–549.

    Article  PubMed  Google Scholar 

  52. Lories RJ, Peeters J, Bakker A, Tylzanowski P, Derese I, Schrooten J, Thomas JT, Luyten FP. Articular cartilage and biomechanical properties of the long bones in Frzb-knockout mice. Arthritis Rheum. 2007;56:4095–4103.

    Article  PubMed  CAS  Google Scholar 

  53. Loughlin J. Genetics of osteoarthritis. Curr Opin Rheumatol. 2011;23:479–483.

    Article  PubMed  Google Scholar 

  54. Lovejoy CO, McCollum MA, Reno PL, Rosenman BA. Developmental biology and human evolution. Annu Rev Anthropol. 2003;32:85–109.

    Article  Google Scholar 

  55. Lynch JA, Parimi N, Chaganti RK, Nevitt MC, Lane NE. The association of proximal femoral shape and incident radiographic hip OA in elderly women. Osteoarthritis Cartilage. 2009;17:1313–1318.

    Article  PubMed  CAS  Google Scholar 

  56. Meulenbelt I, Min JL, Bos S, Riyazi N, Houwing-Duistermaat JJ, van der Wijk HJ, Kroon HM, Nakajima M, Ikegawa S, Uitterlinden AG, van Meurs JB, van der Deure WM, Visser TJ, Seymour AB, Lakenberg N, van der Breggen R, Kremer D, van Duijn CM, Kloppenburg M, Loughlin J, Slagboom PE. Identification of DIO2 as a new susceptibility locus for symptomatic osteoarthritis. Hum Mol Genet. 2008;17:1867–1875.

    Article  PubMed  CAS  Google Scholar 

  57. Miyamoto Y, Mabuchi A, Shi D, Kubo T, Takatori Y, Saito S, Fujioka M, Sudo A, Uchida A, Yamamoto S, Ozaki K, Takigawa M, Tanaka T, Nakamura Y, Jiang Q, Ikegawa S. A functional polymorphism in the 5’ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat Genet. 2007;39:529–533.

    Article  PubMed  CAS  Google Scholar 

  58. Murray AW, Wilson NI. Changing incidence of slipped capital femoral epiphysis: a relationship with obesity? J Bone Joint Surg Br. 2008;90:92–94.

    PubMed  CAS  Google Scholar 

  59. Murray RO. The aetiology of primary osteoarthritis of the hip. Br J Radiol. 1965;38:810–824.

    Article  PubMed  CAS  Google Scholar 

  60. Murray RO, Duncan C. Athletic activity in adolescence as an etiological factor in degenerative hip disease. J Bone Joint Surg Br. 1971;53:406–419.

    PubMed  CAS  Google Scholar 

  61. Myers J, Hadlow S, Lynskey T. The effectiveness of a programme for neonatal hip screening over a period of 40 years: a follow-up of the New Plymouth experience. J Bone Joint Surg Br. 2009;91:245–248.

    Article  PubMed  CAS  Google Scholar 

  62. Nakahara I, Takao M, Sakai T, Nishii T, Yoshikawa H, Sugano N. Gender differences in 3D morphology and bony impingement of human hips. J Orthop Res. 2011;29:333–339.

    Article  PubMed  Google Scholar 

  63. Nguyen AR, Ling J, Gomes B, Antoniou G, Sutherland LM, Cundy PJ. Slipped capital femoral epiphysis: rising rates with obesity and aboriginality in South Australia. J Bone Joint Surg Br. 2011;93:1416–1423.

    Article  PubMed  CAS  Google Scholar 

  64. Nicholls AS, Kiran A, Pollard TC, Hart D, Arden CP, Spector T, Gill HS, Murray DW, Carr AJ, Arden NK. The association between hip morphology parameters and 19-year risk of end-stage osteoarthritis in the hip: a nested case-control study. Arthritis Rheum. 2011.

  65. Nötzli HP, Wyss TF, Stoecklin CH, Schmid MR, Treiber K, Hodler J. The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg Br. 2002;84:556–560.

    Article  PubMed  Google Scholar 

  66. Novacheck TF. Walking, running, and sprinting: a three-dimensional analysis of kinematics and kinetics. Instr Course Lect. 1995;44:497–506.

    PubMed  CAS  Google Scholar 

  67. Nowlan NC, Prendergast PJ, Murphy P. Identification of mechanosensitive genes during embryonic bone formation. PLoS Comp Biol. 2008;4:e1000250.

    Article  CAS  Google Scholar 

  68. Nowlan NC, Sharpe J, Roddy KA, Prendergast PJ, Murphy P. Mechanobiology of embryonic skeletal development: insights from animal models. Birth Defects Res C Embryo Rev. 2010;90:203–213.

    Article  CAS  Google Scholar 

  69. Ogden JA. Development and growth of the hip. In: Katz JF, Siffert, RS, eds. Managment of Hip Disorders in Children. Philadelphia, PA, USA: JB Lippincott; 1983:1–32.

    Google Scholar 

  70. Palacios J, Rodriguez JI, Ruiz A, Sanchez M, Alvarez I, DeMiguel E. Long bone development in extrinsic fetal akinesia: an experimental study in rat fetuses subjected to oligohydramnios. Teratology. 1992;46:79–84.

    Article  PubMed  CAS  Google Scholar 

  71. Pollard TC, Villar RN, Norton MR, Fern ED, Williams MR, Murray DW, Carr AJ. Genetic influences in the aetiology of femoroacetabular impingement: a sibling study. J Bone Joint Surg Br. 2010;92:209–216.

    Article  PubMed  CAS  Google Scholar 

  72. Pollard TC, Villar RN, Norton MR, Fern ED, Williams MR, Simpson DJ, Murray DW, Carr AJ. Femoroacetabular impingement and classification of the cam deformity: the reference interval in normal hips. Acta Orthop. 2010;81:134–141.

    Article  PubMed  Google Scholar 

  73. Ralis Z, McKibbin B. Changes in shape of the human hip joint during its development and their relation to its stability. J Bone Joint Surg Br. 1973;55:780–785.

    PubMed  CAS  Google Scholar 

  74. Reichenbach S, Juni P, Nuesch E, Frey F, Ganz R, Leunig M. An examination chair to measure internal rotation of the hip in routine settings: a validation study. Osteoarthritis Cartilage. 2010;18:365–371.

    Article  PubMed  CAS  Google Scholar 

  75. Reichenbach S, Juni P, Werlen S, Nuesch E, Pfirrmann CW, Trelle S, Odermatt A, Hofstetter W, Ganz R, Leunig M. Prevalence of cam-type deformity on hip magnetic resonance imaging in young males: a cross-sectional study. Arthritis Care Res (Hoboken). 2010;62:1319–1327.

    Article  Google Scholar 

  76. Reynard LN, Bui C, Canty-Laird EG, Young DA, Loughlin J. Expression of the osteoarthritis-associated gene GDF5 is modulated epigenetically by DNA methylation. Hum Mol Genet. 2011;20:3450–3460.

    Article  PubMed  CAS  Google Scholar 

  77. Roaas A, Andersson GB. Normal range of motion of the hip, knee and ankle joints in male subjects, 30–40 years of age. Acta Orthop Scand. 1982;53:205–208.

    Article  PubMed  CAS  Google Scholar 

  78. Roach KE, Miles TP. Normal hip and knee active range of motion: the relationship to age. Phys Ther. 1991;71:656–665.

    PubMed  CAS  Google Scholar 

  79. Roddy KA, Prendergast PJ, Murphy P. Mechanical influences on morphogenesis of the knee joint revealed through morphological, molecular and computational analysis of immobilised embryos. PloS One. 2011;6:e17526.

    Article  PubMed  CAS  Google Scholar 

  80. Roos EM, Dahlberg L. Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized, controlled trial in patients at risk of osteoarthritis. Arthritis Rheum. 2005;52:3507–3514.

    Article  PubMed  CAS  Google Scholar 

  81. Sakao K, Takahashi KA, Arai Y, Saito M, Honjyo K, Hiraoka N, Kishida T, Mazda O, Imanishi J, Kubo T. Asporin and transforming growth factor-beta gene expression in osteoblasts from subchondral bone and osteophytes in osteoarthritis. J Orthop Sci. o2009;14:738–747.

    Google Scholar 

  82. Schultz AH. The physical distinctions of man. Proc Am Phil Soc. 1950;94:428–449.

    Google Scholar 

  83. Schumann S, Tannast M, Nolte LP, Zheng G. Validation of statistical shape model based reconstruction of the proximal femur—a morphology study. Med Eng Phys. 2010;32:638–644.

    Article  PubMed  Google Scholar 

  84. Shea BT. Allometry and heterochrony in the African apes. Am J Phys Anthropol. 1983;62:275–289.

    Article  PubMed  CAS  Google Scholar 

  85. Shefelbine SJ, Carter DR. Mechanobiological predictions of growth front morphology in developmental hip dysplasia. J Orthop Res. 2004;22:346–352.

    Article  PubMed  Google Scholar 

  86. Shi D, Dai J, Zhu P, Qin J, Zhu L, Zhu H, Zhao B, Qiu X, Xu Z, Chen D, Yi L, Ikegawa S, Jiang Q. Association of the D repeat polymorphism in the ASPN gene with developmental dysplasia of the hip: a case-control study in Han Chinese. Arthritis Res Ther. 2011;13:R27.

    Article  PubMed  Google Scholar 

  87. Siebenrock KA, Ferner F, Noble PC, Santore RF, Werlen S, Mamisch TC. The cam-type deformity of the proximal femur arises in childhood in response to vigorous sporting activity. Clin Orthop Relat Res. 2011;469:3229–3240.

    Article  PubMed  CAS  Google Scholar 

  88. Smyth PP, Taylor CJ, Adams JE. Vertebral shape: automatic measurement with active shape models. Radiology. 1999;211:571–578.

    PubMed  CAS  Google Scholar 

  89. Song KS, Oh CW, Lee HJ, Kim SD. Epidemiology and demographics of slipped capital femoral epiphysis in Korea: a multicenter study by the Korean Pediatric Orthopedic Society. J Pediatr Orthop. 2009;29:683–686.

    Article  PubMed  Google Scholar 

  90. Starke A, Herzog K, Sohrt J, Haist V, Hohling A, Baumgartner W, Rehage J. Diagnostic procedures and surgical treatment of craniodorsal coxofemoral luxation in calves. Vet Surg. 2007;36:99–106.

    Article  PubMed  Google Scholar 

  91. Stecher RM. Osteoarthritis of the hip in a gorilla; report of a third case. Clin Orthop Relat Res. 1958;12:307–314.

    CAS  Google Scholar 

  92. Stevenson DA, Mineau G, Kerber RA, Viskochil DH, Schaefer C, Roach JW. Familial predisposition to developmental dysplasia of the hip. J Pediatr Orthop. 2009;29:463–466.

    Article  PubMed  Google Scholar 

  93. Takeyama A, Naito M, Shiramizu K, Kiyama T. Prevalence of femoroacetabular impingement in Asian patients with osteoarthritis of the hip. Int Orthop. 2009;33:1229–1232.

    Article  PubMed  Google Scholar 

  94. Tannast M, Goricki D, Beck M, Murphy SB, Siebenrock KA. Hip damage occurs at the zone of femoroacetabular impingement. Clin Orthop Relat Res. 2008;466:273–280.

    Article  PubMed  CAS  Google Scholar 

  95. Tardieu C. Short adolescence in early hominids: infantile and adolescent growth of the human femur. Am J Phys Anthropol. 1998;107:163–178.

    Article  PubMed  CAS  Google Scholar 

  96. Tayton E. Femoral anteversion: a necessary angle or an evolutionary vestige? J Bone Joint Surg Br. 2007;89:1283–1288.

    Article  PubMed  CAS  Google Scholar 

  97. Teer JK, Mullikin JC. Exome sequencing: the sweet spot before whole genomes. Hum Mol Genet. 2010;19:R145–151.

    Article  PubMed  CAS  Google Scholar 

  98. Tong SH, Eid MA, Chow W, To MK. Screening for developmental dysplasia of the hip in Hong Kong. J Orthop Surg (Hong Kong). 2011;19:200–203.

    Google Scholar 

  99. Toogood PA, Skalak A, Cooperman DR. Proximal femoral anatomy in the normal human population. Clin Orthop Relat Res. 2009;467:876–885.

    Article  PubMed  Google Scholar 

  100. Valdes AM, Evangelou E, Kerkhof HJ, Tamm A, Doherty SA, Kisand K, Tamm A, Kerna I, Uitterlinden A, Hofman A, Rivadeneira F, Cooper C, Dennison EM, Zhang W, Muir KR, Ioannidis JP, Wheeler M, Maciewicz RA, van Meurs JB, Arden NK, Spector TD, Doherty M. The GDF5 rs143383 polymorphism is associated with osteoarthritis of the knee with genome-wide statistical significance. Ann Rheum Dis. 2011;70:873–875.

    Article  PubMed  CAS  Google Scholar 

  101. Valdes AM, Spector TD. The genetic epidemiology of osteoarthritis. Curr Opin Rheumatol. 2010;22:139–143.

    Article  PubMed  Google Scholar 

  102. Valdes AM, Spector TD, Tamm A, Kisand K, Doherty SA, Dennison EM, Mangino M, Tamm A, Kerna I, Hart DJ, Wheeler M, Cooper C, Lories RJ, Arden NK, Doherty M. Genetic variation in the SMAD3 gene is associated with hip and knee osteoarthritis. Arthritis Rheum. 2010;62:2347–2352.

    Article  PubMed  CAS  Google Scholar 

  103. Waarsing JH, Kloppenburg M, Slagboom PE, Kroon HM, Houwing-Duistermaat JJ, Weinans H, Meulenbelt I. Osteoarthritis susceptibility genes influence the association between hip morphology and osteoarthritis. Arthritis Rheum. 2011;63:1349–1354.

    Article  PubMed  CAS  Google Scholar 

  104. Walker JM. Histological study of the fetal development of the human acetabulum and labrum: significance in congenital hip disease. Yale J Biol Med. 1981;54:255–263.

    PubMed  CAS  Google Scholar 

  105. Walker JM, Goldsmith CH. Morphometric study of the fetal development of the human hip joint: significance for congenital hip disease. Yale J Biol Med. 1981;54:411–437.

    PubMed  CAS  Google Scholar 

  106. Weinstein SL. Natural history of congenital hip dislocation (CDH) and hip dysplasia. Clin Orthop Relat Res. 1987;225:62–76.

    PubMed  Google Scholar 

  107. Wiberg G. The anatomy and roentgenographic appearance of a normal hip joint. Acta Chir Scand Suppl. 1939;83:7–38.

    Google Scholar 

  108. Wilkinson JA. Femoral anteversion in the rabbit. J Bone Joint Surg Br. 1962;44:386–397.

    PubMed  Google Scholar 

  109. Wilkinson JA. Prime factors in the etiology of congenital dislocation of the hip. J Bone Joint Surg Br. 1963;45:268–283.

    Google Scholar 

  110. Wolpert L. Principles of Development. Oxford, UK: Oxford University Press; 2006.

    Google Scholar 

  111. Yiv BC, Saidin R, Cundy PJ, Tgetgel JD, Aguilar J, McCaul KA, Keane RJ, Chan A, Scott H. Developmental dysplasia of the hip in South Australia in 1991: prevalence and risk factors. J Paediatr Child Health. 1997;33:151–156.

    Article  PubMed  CAS  Google Scholar 

  112. Yoshimura N, Campbell L, Hashimoto T, Kinoshita H, Okayasu T, Wilman C, Coggon D, Croft P, Cooper C. Acetabular dysplasia and hip osteoarthritis in Britain and Japan. Br J Rheumatol. 1998;37:1193–1197.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Hogervorst MD, PhD.

Additional information

Each author certifies that he or she, or a member of their immediate family, has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.

All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research editors and board members are on file with the publication and can be viewed on request.

Appendix: search strategy and criteria

Appendix: search strategy and criteria

We performed three searches in Medline, Embase, and Web of Science summarizing the literature on mechanical and genetic factors of hip growth and development. For these searches we formed six groups of search terms and one group with exclusion terms composed of the first three authors in joint discussion. The first group, Group A, referred to terms related to “the hip”, Group B to “growth and development”, Group C to “mechanical factors”, Group D to “genetic factors”, Group E to “DHD”, and Group F referred to “prevalence”. Group G consisted of exclusion terms and was composed of selecting irrelevant title words found during pilot searches.

For each search we combined three groups of terms. For example, to investigate the influence of mechanical factors on hip growth and development, we combined Group A, B, and C. They were connected using the Boolean operator AND. In addition, Group G was added using the Boolean operator NOT. Terms within a group were combined with the Boolean operator OR. All used search terms and group combinations are reported in the Appendix. The search field was “title and abstract” combined with MESH terms when using Medline. The search field for exclusion terms was “title” only. The three searches resulted in three lists of articles for each database. These lists were then searched based on titles and abstracts and had to contain specific reference to mechanical or genetic aspects of hip ontogeny, or imaging and image analysis, or evolution, embryology, or genes. Articles that did not contain any of these subjects were excluded. Also, articles written in other languages than English, German, French, or Dutch were excluded. After selection, further articles were added from reference lists of included articles.

The first search, regarding the effect of mechanical phenomena on growth and development of the proximal femur in both humans and animals, yielded over 13,500 results. The second search for genes and genetic mechanisms associated with skeletogenesis and the hip resulted in more than 8500 articles. The third search was focused on the prevalence of DDH, SCFE, and FAI with regard to different populations, twin studies, and sex. Over 3500 articles were found.

Of the more than 25,500 publications found in total, 25,330 were irrelevant based on duplicates, title, and abstract, leaving 170 publications for evaluation (Fig. 2).

 

A

Terms related to the hip

B

Terms related to growth and development

C

Terms related to mechanical factors

D

Terms related to genetic factors

E

Terms related to DDH, SCFE, FAI

F

Terms related to prevalence

G

Exclusion terms

hip

femur

head

femoral

head

femur

neck

femoral

neck

femoral

torsion

proximal

femur

proximal

femoral

acetabulum

Epiphyses

epiphysis

growth

plate

development

growth

ontogeny

fetus

fetal

intrauterine

intra-uterine

intra uterine

prenatal

pregnancy

trimester

antenatal

young

adolescent

child

infant

children

childhood

puberty

neonatal

neonate

neonates

toddler

toddlers

schoolchildren

schoolchild

infants

youth

evolution

biomechanics

stress

sports

sporting

athletic

activity

weight-Bearing

weight Bearing

exercise

movement

posture

load

loading

gait

mechanical

running

motor

activity

locomotion

pressure

stability

shape

genetic

genes

gene

aetiology

etiology

genetics

polymorphism

twins

twin

family

gdf5

frzb

dio2

calm1

smad3

biological evolution

impingement

FAI

dislocation

hip

dysplasia

disease

hip

slipped

epiphysiolysis

epiphysiolyses

SCFE

DDH

cam

pincer

SUFE

morphology

morphometric

ethnic

prevalence

incidence

gender

population

asian

asia

japanese

japan

africa

european

britain

french

north american

north america

german

germany

Spanish

spain

racial

race

caucasians

caucasian

chinese

china

korea

korean

united kingdom

france

cerebral palsy

prostheses

osteotomy

fracture

fractures

arthroplasty

replacement

implant

implants

obesity

diabetes

blood pressure

adiposity

component

components

obese

metabolic

syndrome

liver

cardiovascular

  1. List of the terms used in the searches categorized in seven groups. Terms within a group were combined using the Boolean operator OR.
  2. To find publications on the effect of mechanical factors on hip growth and development, we combined search terms A AND B AND C NOT G.
  3. To find publications regarding genetic factors associated with hip growth and development, we combined A AND B AND D NOT G.
  4. To find publications on prevalence of DDH, SCFE, and FAI in different populations, we combined search terms A AND E AND F NOT G.

About this article

Cite this article

Hogervorst, T., Eilander, W., Fikkers, J.T. et al. Hip Ontogenesis: How Evolution, Genes, and Load History Shape Hip Morphotype and Cartilotype. Clin Orthop Relat Res 470, 3284–3296 (2012). https://doi.org/10.1007/s11999-012-2511-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-012-2511-4

Keywords

Navigation