Skip to main content
Log in

Early Definitive Spinal Fusion in Young Children: What We Have Learned

  • Symposium: Early Onset Scoliosis
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Early-onset scoliosis, when left untreated, leads to severe deformity. Until the last decade, treatment of progressive curves in young children often consisted of definitive spinal fusion. The recognition of thoracic insufficiency syndrome associated with definitive early fusion has led to the development of new surgical techniques developed to preserve spinal and thoracic growth in young patients with progressive scoliosis.

Questions/purposes

We asked: (1) Does early definitive fusion arrest progression of spinal deformity? To what extent does early definitive spinal fusion influence (2) pulmonary function and (3) thoracic growth?

Methods

A Medline search of the published literature on early-onset scoliosis, congenital scoliosis, and infantile scoliosis between 2008 and 2010 was performed on spinal fusion for early-onset scoliosis, focusing on studies reporting pulmonary function at followup.

Results

Spinal deformity is apparently not well controlled by early fusion since revision surgery has been required in 24% to 39% of patients who underwent presumed definitive fusion in early childhood. Restrictive pulmonary disease, defined as forced vital capacity less than 50% of normal, occurs in 43% to 64% of patients who undergo early fusion surgery with those children who have extensive thoracic fusions and whose fusions involve the proximal thoracic spine at highest risk. Thoracic growth after early surgery is an average of 50% of that seen in children with scoliosis who do not have early surgery. Diminished thoracic spinal height correlates with decreased forced vital capacity.

Conclusions

The literature does not support routine definitive fusion of thoracic spinal deformity at an early age in children with scoliosis.

Level of Evidence

Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akbarnia BA, Breakwell LM, Marks DS, McCarthy RE, Thompson AG, Canale SK, Kostial PN, Tambe A, Asher MA; Growing Spine Study Group. Dual growing rod technique followed for three to eleven years until final fusion: the effect of frequency of lengthening. Spine. 2008;33:984–990.

    Article  PubMed  Google Scholar 

  2. Akbarnia BA, Marks DS, Boachie-Adjei O, Thompson AG, Asher MA. Dual growing rod technique for the treatment of progressive early-onset scoliosis: a multicenter study. Spine. 2005;30:S46–S57.

    Article  PubMed  Google Scholar 

  3. Betz RR, Ranade A, Samdani AF, Chafetz R, D’Andrea LP, Gaughan JP, Asghar J, Grewal H, Mulcahey MJ. Vertebral body stapling: a fusionless treatment option for a growing child with moderate idiopathic scoliosis. Spine. 2010:35:169–176.

    Article  PubMed  Google Scholar 

  4. Bowen RE, Scaduto AA, Banuelos S. Does early thoracic fusion exacerbate preexisting restrictive lung disease in congenital scoliosis patients? J Pediatr Orthop. 2008;28:506–511.

    Article  PubMed  Google Scholar 

  5. Branthwaite MA. Cardiorespiratory consequences of unfused idiopathic scoliosis. Br J Dis Chest. 1986;80:360.

    Article  PubMed  CAS  Google Scholar 

  6. Burri PH. Structural aspects of prenatal and postnatal development and growth of the lung. In: McDonald JA, ed. Lung Growth and Development. New York: Dekker; 1997.

    Google Scholar 

  7. Burrows B, Cline MG, Knudson RJ, Taussig LM, Lebowitz MD. A descriptive analysis of the growth and decline of the FVC and FEV1. Chest. 1983;83:717–724.

    Article  PubMed  CAS  Google Scholar 

  8. Campbell RM. Spine deformities in rare congenital syndromes: clinical issues. Spine. 2009;34:1815–1827.

    Article  PubMed  Google Scholar 

  9. Campbell RM, Hell-Vocke AK. Growth of the thoracic spine in congenital scoliosis after expansion thoracoplasty. J Bone Joint Surg Am. 2003;85:409–420.

    PubMed  Google Scholar 

  10. Campbell RM, Smith MD, Mayes TC, Mangos JA, Willey-Courand DB, Kose N, Pinero RF, Adler ME, Duong HL, Surber JL. The characteristics of thoracic insufficiency syndrome associated with fused ribs and congenital scoliosis. J Bone Joint Surg Am. 2003;85:399–408.

    Article  PubMed  Google Scholar 

  11. Caubet JF, Emans JB, Smith JT, Vanbosse H, Ramirez N, Flynn J, Vitale M, Smith M, St Hilaire T, Klinge S. Increased hemoglobin levels in patients with early onset scoliosis: prevalence and effect of a treatment with VEPTR. Spine. 2009;34:2534–2536.

    Article  PubMed  Google Scholar 

  12. Davies G, Reid L. Effect of scoliosis on growth of alveoli and pulmonary arteries and on the right ventricle. Arch Dis Child. 1971;46:623–632.

    Article  PubMed  CAS  Google Scholar 

  13. Day GA, Upadhyay SS, Ho EK, Leong JC, Ip M. Pulmonary functions in congenital scoliosis. Spine. 1994;19:1027–1031.

    Article  PubMed  CAS  Google Scholar 

  14. Dimeglio A. Growth of the spine before age 5 years. J Pediatr Orthop B. 1993;1:102–107.

    Google Scholar 

  15. Dimeglio A, Bonnel F. Spine Growth [in French]. Paris, France: Springer; 1990.

    Google Scholar 

  16. Dubousset J, Herring JA, Shufflebarger H. The crankshaft phenomenon. J Pediatr Orthop. 1989;9:541–550.

    Article  PubMed  CAS  Google Scholar 

  17. Emans JB, Caubet JF, Ordonez CL, Lee EY, Ciarlo M. The treatment of spine and chest wall deformities with fused ribs by expansion thoracostomy and insertion of vertical expandable prosthetic titanium rib: growth of thoracic spine and improvement of lung volumes. Spine (Phila Pa 1976). 2005;30:S58–S68.

    Google Scholar 

  18. Garrido E, Tome-Bermejo F, Tucker SK, Noordeen HN, Morley TR. Short anterior instrumented fusion and posterior convex non-instrumented fusion of hemivertebra for congenital scoliosis in very young children. Eur Spine J. 2008;17:1507–1514.

    Article  PubMed  CAS  Google Scholar 

  19. Goldberg CJ, Gillic I, Connaughton O, Moore DP, Fogarty EE, Canny GJ, Dowling FE. Respiratory function and cosmesis at maturity in infantile-onset scoliosis. Spine. 2003;28:2397–2406.

    Article  PubMed  CAS  Google Scholar 

  20. Goldberg CJ, Moore DP, Fogarty EE, Dowling FE. Long-term results from in situ fusion for congenital vertebral deformity. Spine. 2002;27:619–628.

    Article  PubMed  Google Scholar 

  21. Hasler CC, Mehrkens A, Hefti F. Efficacy and safety of VEPTR instrumentation for progressive spine deformities in young children without rib fusions. Eur Spine J. 2010;19:400–408.

    Article  PubMed  Google Scholar 

  22. Hedequist DJ. Instrumentation and fusion for congenital spine deformities. Spine. 2009;34:1783–1790.

    Article  PubMed  Google Scholar 

  23. Karol LA, Johnston C, Mladenov K, Schochet P, Walters P, Browne RH. Pulmonary function following early thoracic fusion in non-neuromuscular scoliosis. J Bone Joint Surg Am. 2008;90:1272–1281.

    Article  PubMed  Google Scholar 

  24. Kory RC, Callahan R, Boren HG, Syner JC. The Veteran’s Administration-Army cooperative study of pulmonary function. I. Clinical spirometry in normal men. Am J Med. 1961;30:243–258.

    Article  PubMed  CAS  Google Scholar 

  25. Mahar AT, Bagheri R, Oka R, Kostial P, Akbarnia BA. Biomechanical comparison of different anchors (foundations) for the pediatric dual growing rod technique. Spine J. 2008;8:933–939.

    Article  PubMed  Google Scholar 

  26. McCarthy RE, Sucato D, Turner JL, Zhang H, Henson MA, McCarthy K. Shilla growing rods in a caprine animal model: a pilot study. Clin Orthop Relat Res. 2010;468:705–710.

    Article  PubMed  Google Scholar 

  27. McMaster MJ. Infantile idiopathic scoliosis: can it be prevented? J Bone Joint Surg Br. 1983;65:612.

    PubMed  CAS  Google Scholar 

  28. Mehta MH. Growth as a corrective force in the early treatment of progressive infantile scoliosis. J Bone Joint Surg Br. 2005;87:1237–1247.

    Article  PubMed  CAS  Google Scholar 

  29. Motoyama EK, Deeney VF, Fine GF, Yang CI, Mutich RL, Walczak SA, Moreland MS. Effects of lung function of multiple expansion thoracoplasty in children with thoracic insufficiency syndrome: a longitudinal study. Spine. 2006;31:284–298.

    Article  PubMed  Google Scholar 

  30. Motoyama EK, Yang CI, Deeney VF. Thoracic malformation with early-onset scoliosis: effect of serial VEPTR expansion thoracoplasty on lung growth and function in children. Paediatr Respir Rev. 2009;10:12–17.

    Article  PubMed  Google Scholar 

  31. Newton PO, Farnsworth CL, Faro FD, Mahar AT, Odell TR, Mohamad F, Breisch E, Fricka K, Upasani VV, Amiel D. Spinal growth modulation with an anterolateral flexible tether in an immature bovine model: disc health and motion preservation. Spine. 2008;33:724–733.

    Article  PubMed  Google Scholar 

  32. Noordeen MH, Garrido E, Tucker SK, Elsebaie HB. The surgical treatment of congenital kyphosis. Spine. 2009;34:1808–1814.

    Article  PubMed  CAS  Google Scholar 

  33. Owange-Iraka JW, Harrison A, Warner JO. Lung function in congenital and idiopathic scoliosis. Eur J Pediatr. 1984;142:198–200.

    Article  PubMed  CAS  Google Scholar 

  34. Pehrsson K, Larsson S, Oden A, Nachemson A. Long-term follow-up of patients with untreated scoliosis. A study of mortality, causes of death, and symptoms. Spine. 1992;17:1091–1096.

    Article  PubMed  CAS  Google Scholar 

  35. Pehrsson K, Nachemson A, Olofson J, Ström K, Larsson S. Respiratory failure in scoliosis and other thoracic deformities. A survey of patients with home oxygen or ventilator therapy in Sweden. Spine. 1992;17:714–718.

    Article  PubMed  CAS  Google Scholar 

  36. Ramirez N, Flynn JM, Serrano JA, Carlo S, Cornier AS. The Vertical Expandable Prosthetic Titanium Rib in the treatment of spinal deformity due to progressive early onset scoliosis. J Pediatr Orthop B. 2009;18:197–203.

    Article  PubMed  Google Scholar 

  37. Redding G, Song K, Inscore S, Effmann E, Campbell R. Lung function asymmetry in children with congenital and infantile scoliosis. Spine J. 2008;8:639–644.

    Article  PubMed  Google Scholar 

  38. Ruf M, Jensen R, Letko L, Harms J. Hemivertebra resection and osteotomies in congenital spine deformity. Spine. 2009;34:1791–1799.

    Article  PubMed  Google Scholar 

  39. Sabourin M, Jolivet E, Miladi L, Wicart P, Rampal V, Skalli W. Three-dimensional stereoradiographic modeling of rib cage before and after spinal growing rod procedures in early-onset scoliosis. Clin Biomech (Bristol, Avon). 2010;25:284–291.

    Article  PubMed  Google Scholar 

  40. Samdani.AF, Ranade A, Dolch HJ, Williams R, St Hilaire T, Cahill P, Betz RR. Bilateral use of the vertical expandable prosthetic titanium rib attached to the pelvis: a novel treatment for scoliosis in the growing spine. J Neurosurg Spine. 2009;10:287–292.

    Article  PubMed  Google Scholar 

  41. Sanders JO, D’Astous J, Fitzgerald M, Khoury JG, Kishan S, Sturm PF. Derotational casting for progressive infantile scoliosis. J Pediatr Orthop. 2009;29:581–587.

    Article  PubMed  Google Scholar 

  42. Sankar W,Skaggs DL, Emans JB, Marks DS, Dormans JP, Thompson GH, Shah SA, Sponseller PD, Akbarnia BA. Neurologic risk in growing rod spine surgery in early onset scoliosis: is neuromonitoring necessary for all cases? Spine. 2009;34:1952–1955.

    Article  PubMed  Google Scholar 

  43. Scott JC, Morgan TH. The natural history and prognosis of infantile idiopathic scoliosis. J Bone Joint Surg Br. 1955;37:400–413.

    PubMed  Google Scholar 

  44. Skaggs DL, Choi PD, Rice C, Emans J, Song KM, Smith JT, Campbell RM Jr. Efficacy of intraoperative neurologic monitoring in surgery involving a vertical expandable prosthetic titanium rib for early-onset spinal deformity. J Bone Joint Surg Am. 2009;91:1657–1663.

    Article  PubMed  Google Scholar 

  45. Smith JR, Samdani AF, Pahys J, Ranade A, Asghar J, Cahill P, Betz RR. The role of bracing, casting, and vertical expandable prosthetic titanium rib for the treatment of infantile idiopathic scoliosis: a single-institution experience with 31 consecutive patients. Clinical article. J Neurosurg Spine. 2009;11:3–8.

    Article  PubMed  Google Scholar 

  46. Smith JT, Jerman J, Stringham J, Smith MS, Gollogy S. Does expansion thoracoplasty improve the volume of the convex lung in a windswept thorax? J Pediatr Orthop. 2009;29:944–947.

    Article  PubMed  Google Scholar 

  47. Sponseller PD, Thompson GH, Akbarnia BA, Glait SA, Asher MA, Emans JB, Dietz HC 3rd. Growing rods for infantile scoliosis in Marfan syndrome. Spine. 2009;34:1711–1715.

    Article  PubMed  Google Scholar 

  48. Sponseller PD, Yang JS, Thompson GH, McCarthy RE, Emans JB, Skaggs DL, Asher MA, Yazici M, Poe-Kochert C, Kostial P, Akbarnia BA. Pelvic fixation of growing rods: comparison of constructs. Spine (Phila Pa 1976). 2009;34:1706–1710.

    Google Scholar 

  49. Thurlbeck WM. Postnatal human lung growth. Thorax. 1982;37:564–571.

    Article  PubMed  CAS  Google Scholar 

  50. Tsirikos AI, McMaster MJ. Congenital anomalies of the ribs and chest wall associated with congenital deformities of the spine. J Bone Joint Surg Am. 2005;87:2523–2536.

    Article  PubMed  Google Scholar 

  51. Vitale MG, Matsumoto H, Bye MR, Gomez JA, Booker WA, Hyman JE, Roye DP Jr. A retrospective cohort study of pulmonary function, radiographic measures, and quality of life in children with congenital scoliosis. An evaluation of patient outcomes after early spinal fusion. Spine. 2008;33:1242–1249.

    Article  PubMed  Google Scholar 

  52. Winter RB, Lonstein JE. Congenital thoracic scoliosis with unilateral unsegmented bar and concave fused ribs; rib osteotomy and posterior fusion at 1 year old, anterior and posterior fusion at 5 years old with a 36-year follow-up. Spine. 2007;32:E841–E844.

    Article  PubMed  Google Scholar 

  53. Winter RB, Moe JH. The results of spinal arthrodesis for congenital spinal deformity in patients younger than 5 years old. J Bone Joint Surg Am. 1982;64:419–432.

    PubMed  CAS  Google Scholar 

  54. Yang JS, McElroy MJ, Akbarnia BA, Salari P, Oliveira D, Thompson GH, Emans JB, Yazici M, Skaggs DL, Shah SA, Kostial PN, Sponseller PD. Growing rods for spinal deformity: characterizing consensus and variation in current use. J Pediatr Orthop. 2010;30:264–270.

    Article  PubMed  Google Scholar 

  55. Yazici M, Emans J. Fusionless instrumentation systems for congenital scoliosis: expandable spinal rods and vertical expandable prosthetic titanium rib in the management of congenital spine deformities in the growing child. Spine. 2009;34:1800–1807.

    Article  PubMed  Google Scholar 

  56. Zhang H, Sucato DJ. Unilateral pedicle screw epiphysiodesis of the neurocentral synchondrosis. Production of idiopathic-like scoliosis in an immature animal model. J Bone Joint Surg Am. 2008;90:2460–2469.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori A. Karol MD.

Additional information

Each author certifies that he or she has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 17 kb)

About this article

Cite this article

Karol, L.A. Early Definitive Spinal Fusion in Young Children: What We Have Learned. Clin Orthop Relat Res 469, 1323–1329 (2011). https://doi.org/10.1007/s11999-010-1622-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-010-1622-z

Keywords

Navigation