Skip to main content
Log in

Alendronate Enhances Osteogenic Differentiation of Bone Marrow Stromal Cells: A Preliminary Study

  • Symposium: Tribute to Dr. Marshall Urist: Musculoskeletal Growth Factors
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Alendronate inhibits osteoclastic activity. However, some studies suggest alendronate also has effects on osteoblast activity. We hypothesized alendronate would enhance osteoblastic differentiation without causing cytotoxicity of the osteoblasts. We evaluated the effect of alendronate on the osteogenic differentiation of mouse mesenchymal stem cells. D1 cells (multipotent mouse mesenchymal stem cells) were cultured in osteogenic differentiation medium for 7 days and then treated with alendronate for 2 days before being subjected to various tests using MTT assays, Alizarin Red, enzyme-linked immunosorbent assay, energy-dispersive xray spectrophotometry, reverse transcriptase–polymerase chain reaction, confocal microscopy, and flow cytometric analysis. D1 cells differentiated into osteoblasts in the presence of osteogenic differentiation medium as confirmed by positive Alizarin Red S staining, increased alkaline phosphatase activity and osteocalcin mRNA expression, a calcium peak by energy-dispersive xray spectrophotometry, and by positive immunofluorescence staining against CD44. Osteogenic differentiation was enhanced after treatment with alendronate as confirmed by Alizarin Red S staining, elevated alkaline phosphatase activity and osteocalcin mRNA expression, a greater calcium peak by energy-dispersive xray spectrophotometry, and by immunofluorescence staining against CD44 by flow cytometric analysis. These data suggest alendronate enhances osteogenic differentiation when treated with mouse mesenchymal stem cells in osteogenic differentiation medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adamia S, Maxwell CA, Pilarski LM. Hyaluronan and hyaluronan synthases: potential therapeutic targets in cancer. Curr Drug Targets Cardiovasc Haematol Disord. 2005;5:3–14.

    Article  CAS  PubMed  Google Scholar 

  2. Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC, Bauer DC, Genant HK, Haskell WL, Marcus R, Ott SM, Torner JC, Quandt SA, Reiss TF, Ensrud KE. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet. 1996;348:1535–1541.

    Article  CAS  PubMed  Google Scholar 

  3. Bone HG, Hosking D, Devogelaer JP, Tucci JR, Emkey RD, Tonino RP, Rodriguez-Portales JA, Downs RW, Gupta J, Santora AC, Liberman UA. Ten years’ experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med. 2004;350:1189–1199.

    Article  CAS  PubMed  Google Scholar 

  4. Boonekamp PM, van der Wee-Pals LJ, van Wijk-van Lennep MM, Thesing CW, Bijvoet OL. Two modes of action of bisphosphonates on osteoclastic resorption of mineralized matrix. Bone Miner. 1986;1:27–39.

    CAS  PubMed  Google Scholar 

  5. Chen CH, Ho ML, Chang JK, Hung SH, Wang GJ. Green tea catechin enhances osteogenesis in a bone marrow mesenchymal stem cell line. Osteoporos Int. 2005;16:2039–2045.

    Article  CAS  PubMed  Google Scholar 

  6. Conlan MJ, Rapley JW, Cobb CM. Biostimulation of wound healing by low-energy laser irradiation. J Clin Periodontol. 1996;23:492–496.

    Article  CAS  PubMed  Google Scholar 

  7. Cummings SR, Black DM, Thompson DE, Applegate WB, Barrett-Connor E, Musliner TA, Palermo L, Prineas R, Rubin SM, Scott JC, Vogt T, Wallace R, Yates AJ, LaCroix AZ. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA. 1998;280:2077–2082.

    Article  CAS  PubMed  Google Scholar 

  8. Dahir GA, Cui Q, Anderson P, Simon C, Joyner C, Triffitt JT, Balian G. Pluripotential mesenchymal cells repopulate bone marrow and retain osteogenic properties. Clin Orthop Relat Res. 2000;379(suppl):S134–S145.

    Article  PubMed  Google Scholar 

  9. Delos D, Yang X, Ricciardi BF, Myers ER, Bostrom MP, Camacho NP. The effects of RANKL inhibition on fracture healing and bone strength in a mouse model of osteogenesis imperfecta. J Orthop Res. 2008;26:153–164.

    Article  CAS  PubMed  Google Scholar 

  10. Dvorak MM, Siddiqua A, Ward DT, Carter DH, Dallas SL, Nemeth EF, Riccardi D. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci USA. 2004;101:5140–5145.

    Article  CAS  PubMed  Google Scholar 

  11. Evans CE, Braidman IP. Effects of two novel bisphosphonates on bone cells in vitro. Bone Miner. 1994;26:95–107.

    Article  CAS  PubMed  Google Scholar 

  12. Fast DK, Felix R, Dowse C, Neuman WF, Fleisch H. The effects of diphosphonates on the growth and glycolysis of connective tissue cells in culture. Biochem J. 1978;172:97–107.

    CAS  PubMed  Google Scholar 

  13. Felix R, Guenther HL, Fleisch H. The subcellular distribution of [14C]dichloromethylene bisphosphonate and [14C]1-hydroxyethylidene-1,1-bisphosphonate in cultured calvaria cells. Calcif Tissue Int. 1984;36:108–113.

    Article  CAS  PubMed  Google Scholar 

  14. Fisher JE, Rogers MJ, Halasy JM, Luckman SP, Hughes DE, Masarachia PJ, Wesolowski G, Russell RG, Rodan GA, Reszka AA. Alendronate mechanism of action: geranylgeraniol, an intermediate in the melavonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc Natl Acad Sci USA. 1999;96:133–138.

    Article  CAS  PubMed  Google Scholar 

  15. Fromigue O, Body JJ. Bisphosphonates influence the proliferation and the maturation of normal human osteoblasts. J Endocrinol Invest. 2002;25:539–546.

    CAS  PubMed  Google Scholar 

  16. Giuliani N, Pedrazzoni M, Negri G, Passeri G, Impicciatore M, Girasole G. Biphosphonates stimulate formation of osteoblast precursors and mineralized nodules in murine and human bone marrow cultures in vitro and promote early osteoblastogenesis in young and aged mice in vivo. Bone. 1998;22:455–461.

    Article  CAS  PubMed  Google Scholar 

  17. Gundberg CM, Hauschka PV, Lian JB, Gallop PM. Osteocalcin: isolation, characterization, and detection. Methods Enzymol. 1984;107:516–544.

    Article  CAS  PubMed  Google Scholar 

  18. Hughes DE, MacDonald BR, Russell RG, Growen M. Inhibition of osteoclast-like cell formation by bisphosphonates in long-term cultures of human bone marrow. J Clin Invest. 1989;83:1930–1935.

    Article  CAS  PubMed  Google Scholar 

  19. Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, Mundy GR, Boyce BF. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res. 1995;10:1478–1487.

    Article  CAS  PubMed  Google Scholar 

  20. Im GI, Qureshi SA, Kenney J, Rubash HE, Shanbhag AS. Osteoblast proliferation and maturation by bisphosphonates. Biomaterials. 2004;25:4105–4115.

    Article  CAS  PubMed  Google Scholar 

  21. Jamal HH, Aubin JE. CD44 Expression in fetal rat bone: in vivo and in vitro analysis. Exp Cell Res. 1996;223:467–477.

    Article  CAS  PubMed  Google Scholar 

  22. Karu T. High-tech helps to estimate cellular mechanisms of low power laser therapy. Lasers Surg Med. 2004;34:298–299.

    Article  PubMed  Google Scholar 

  23. Luckman SP, Hughes DE, Coxon FP, Graham R, Russell G, Rogers MJ. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res. 1998;13:581–589.

    Article  CAS  PubMed  Google Scholar 

  24. Mackie PS, Fisher JL, Zhou H, Choong PF. Bisphosphonates regulate cell growth and gene expression in the UMR 106-01 clonal rat osteosarcoma cell line. Br J Cancer. 2001;84:951–958.

    Article  CAS  PubMed  Google Scholar 

  25. Mathov I, Plotkin LI, Sgarlata CL, Leoni J, Bellido T. Extracellular signal-regulated kinases and calcium channels are involved in the proliferative effect of bisphosphonates on osteoblastic cells in vitro. J Bone Miner Res. 2001;16:2050–2056.

    Article  CAS  PubMed  Google Scholar 

  26. Mester E, Jaszsagi-Nagy E. The effects of laser radiation on wound healing and collagen synthesis. Studia Biophys. 1973;35:227–230.

    CAS  Google Scholar 

  27. Naidu A, Dechow PC, Spears R, Wright JM, Kessler HP, Opperman LA. The effects of bisphosphonates on osteoblasts in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106:829–837.

    Article  Google Scholar 

  28. Oron U, Yaakobi T, Oron A, Hayam G, Gepstein L, Rubin O, Wolf T, Ben Haim S. Attenuation of infarct size in rats and dogs after myocardial infarction by low-energy laser irradiation. Laser Surg Med. 2001;28:204–211.

    Article  CAS  Google Scholar 

  29. Otsuru S, Tamai K, Yamazaki T, Yoshikawa H, Kaneda Y. Circulating bone marrow-derived osteoblast progenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell-derived factor-1 pathway. Stem Cells. 2008;26:223–234.

    Article  CAS  PubMed  Google Scholar 

  30. Owen TA, Holthuis J, Markose E, van Wijnen AJ, Wolfe SA, Grimes SR, Lian JB, Stein GS. Modifications of protein-DNA interactions in the proximal promoter of a cell-growth-regulated histone gene during onset and progression of osteoblast differentiation. Proc Natl Acad Sci USA. 1990;87:5129–5133.

    Article  CAS  PubMed  Google Scholar 

  31. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147.

    Article  CAS  PubMed  Google Scholar 

  32. Plasmans CM, Jap PH, Kuijpers W, Slooff TJ. Influence of a diphosphonate on the cellular aspect of young bone tissue. Calcif Tissue Int. 1980;32:247–266.

    Article  CAS  PubMed  Google Scholar 

  33. Plotkin LI, Weinstein RS, Parfitt AM, Roberson PK, Manolagas SC, Bellido T. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest. 1999;104:1363–1374.

    Article  CAS  PubMed  Google Scholar 

  34. Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, Spelsberg TC. Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res. 2000;60:6001–6007.

    CAS  PubMed  Google Scholar 

  35. Rodan GA, Fleisch HA. Bisphosphonates: mechanisms of action. J Clin Invest. 1996;97:2692–2696.

    Article  CAS  PubMed  Google Scholar 

  36. Sato M, Grasser W, Endo N, Akins R, Simmons H, Thompson DD, Golub E, Rodan GA. Bisphosphonate action: alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest. 1991;88:2095–2105.

    Article  CAS  PubMed  Google Scholar 

  37. Schmidt A, Rutledge SJ, Endo N, Opas EE, Tanaka H, Wesolowski G, Leu CT, Huang Z, Ramachandaran C, Rodan SB, Rodan GA. Protein-tyrosine phosphatase activity regulates osteoclast formation and function: inhibition by alendronate. Proc Nat Acad Sci USA. 1996;93:3068–3073.

    Article  CAS  PubMed  Google Scholar 

  38. Shanbhag AS. Use of bisphosphonates to improve the durability of total joint replacements. J Am Acad Orthop Surg. 2006;14:215–225.

    PubMed  Google Scholar 

  39. Sikavitsas VI, Temenoff JS, Mikos AG. Biomaterial and bone mechanotransduction. Biomaterials. 2001;22:2581–2593.

    Article  CAS  PubMed  Google Scholar 

  40. van Beek E, Lowik C, van der Pluijm G, Papapoulos S. The role of geranylgeranylation in bone resorption and its suppression by bisphosphonates in fetal bone explants in vitro: a clue to the mechanism of action of nitrogen-containing bisphosphonates. J Bone Miner Res. 1999;14:722–729.

    Article  Google Scholar 

  41. von Knoch F, Jaquiery C, Kowalsky M, Schaeren S, Alabre C, Martin I, Rubash HE, Shanbhag AS. Effects of bisphosphonates on proliferation and osteoblast differentiation of human bone marrow stromal cells. Biomaterials. 2005;26:6941–6949.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taek Rim Yoon MD.

Additional information

One of the authors (TRY) received funding from a Chonnam National University (Korea) research fund.

About this article

Cite this article

Kim, H.K., Kim, J.H., Abbas, A.A. et al. Alendronate Enhances Osteogenic Differentiation of Bone Marrow Stromal Cells: A Preliminary Study. Clin Orthop Relat Res 467, 3121–3128 (2009). https://doi.org/10.1007/s11999-008-0409-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-008-0409-y

Keywords

Navigation