Skip to main content
Log in

Preparation and performance study of thermally conductive coatings with mixed fillers

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The increasing demand for effective thermal management has led to a growing need for composite coatings with high thermal conductivity (TC). In this work, we developed a novel approach to enhance the TC of polymer coatings by incorporating hybrid fillers composed of hexagonal boron nitride (h-BN) and graphitic carbon (GC). The process involved the creation of hybrid fibers through wet spinning, combining biomass polysaccharide sodium alginate with bulk h-BN, followed by controlled carbonization at varying temperatures. During carbonization, the in-situ generation of small-molecule compounds facilitated the preparation of BN nanosheets and the formation of a unique BN and graphitic carbon (BN-GC) preassembled  heterostructure. By adjusting the carbonization temperature, the degree of graphitization was controlled in the hybrid fillers. Subsequently, these hybrid fillers were blended with a polymer matrix to create photocurable coatings. Leveraging the intrinsic high thermal conductivity of BN nanosheets and the low interfacial thermal resistance between BN and GC, our composite coatings demonstrated a remarkable enhancement in TC. Notably, with a filler content of 20 wt%, the resulting composite coating exhibited an impressive in-plane and out-of-plane TC of up to 2.34 and 0.41 W/(m K), respectively. This innovative approach holds significant promise for improving the thermal performance of polymer coatings in various applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Maqbool, Z, Hanief, M, Parveez, M, “Review on Performance Enhancement of Phase Change Material Based Heat Sinks in Conjugation with Thermal Conductivity Enhancers for Electronic Cooling.” J. Energy Storage, 60 106591–106607 (2023)

    Article  Google Scholar 

  2. Siddique, ARM, Mahmud, S, Heyst, BV, “A Comprehensive Review on a Passive (Phase Change Materials) and an Active (Thermoelectric Cooler) Battery Thermal Management System and Their Limitations.” J. Power Sources, 401 224–237 (2018)

    Article  CAS  Google Scholar 

  3. Yeom, T, Simon, T, Zhang, M, Yu, Y, Cui, T, “Active Heat Sink with Piezoelectric Translational Agitators, Piezoelectric Synthetic Jets, and Micro Pin Fin Arrays.” Exp. Therm. Fluid Sci., 99 190–199 (2018)

    Article  CAS  Google Scholar 

  4. Hu, D, Liu, H, Ma, W, “Rational Design of Nanohybrids for Highly Thermally Conductive Polymer Composites.” Compos. Commun., 21 100427–100437 (2020)

    Article  Google Scholar 

  5. Li, Y, Qian, Y, Jiang, Q, Haruna, AY, Luo, Y, Yang, J, “Thermally Conductive Polymer-Based Composites: Fundamentals, Progress and Flame Retardancy/Anti-Electromagnetic Interference Design.” J. Mater. Chem. C., 10 (39) 14399–14430 (2022)

    Article  Google Scholar 

  6. Wang, Z, Wu, Z, Weng, L, Ge, S, Jiang, D, Huang, M, Mulvihill, DM, Chen, Q, Guo, Z, Jazzar, A, He, X, Zhang, X, Xu, BB, “A Roadmap Review of Thermally Conductive Polymer Composites: Critical Factors, Progress, and Prospects.” Adv. Funct. Mater., 33 2301549–2301586 (2023)

    Article  CAS  Google Scholar 

  7. Yu, W, Duan, Z, Zhang, G, Liu, C, Fan, S, “Effect of an Auxiliary Plate on Passive Heat Dissipation of Carbon Nanotube-Based Materials.” Nano Lett., 18 (3) 1770–1776 (2018)

    Article  CAS  PubMed  Google Scholar 

  8. Zhao, C, Li, Y, Liu, Y, Xie, H, Yu, W, “A Critical Review of the Preparation Strategies of Thermally Conductive and Electrically Insulating Polymeric Materials and Their Applications in Heat Dissipation of Electronic Devices.” Adv. Compos. Hybrid Mater., 6 (1) 27–52 (2022)

    Article  Google Scholar 

  9. Chen, Y, Hou, X, Liao, M, Dai, W, Wang, Z, Yan, C, Li, H, Lin, C-T, Jiang, N, Yu, J, “Constructing a ‘Pea-Pod-Like’ Alumina-Graphene Binary Architecture for Enhancing Thermal Conductivity of Epoxy Composite.” Chem. Eng. J., 381 122690–122696 (2020)

    Article  CAS  Google Scholar 

  10. Xiao, C, Chen, L, Tang, Y, Zhang, X, Zheng, K, Tian, X, “Three Dimensional Porous Alumina Network for Polymer Composites with Enhanced Thermal Conductivity.” Compos. Part A Appl. Sci. Manuf., 124 105511–105519 (2019)

    Article  CAS  Google Scholar 

  11. Chen, Z, Gao, S, Zhang, J, Liu, D, Zeng, J, Yao, Y, Xu, J-B, Sun, R, “Electrospun Silicon Carbide Nanowire Film: A Highly Thermally Conductivity and Flexible Material for Advanced Thermal Management.” Compos. Commun., 41 101654–101660 (2023)

    Article  Google Scholar 

  12. Zhou, X, Xu, J, Wu, M, Gao, J, Zhang, J, Zhang, Q, Shi, Z, Wang, B, Xu, C, Yang, J, “Bioinspired, Anisotropically Highly Thermoconductive Silicon Carbide/Epoxy Composite Based on a Nacre-Mimetic Architecture.” Compos. Part A Appl. Sci. Manuf., 170 107538–107549 (2023)

    Article  CAS  Google Scholar 

  13. Liu, Z, Li, J, Liu, X, “Novel Functionalized BN Nanosheets/Epoxy Composites with Advanced Thermal Conductivity and Mechanical Properties.” ACS Appl. Mater. Interfaces, 12 (5) 6503–6515 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. Xu, F, Zhang, M, Cui, Y, Bao, D, Peng, J, Gao, Y, Lin, D, Geng, H, Zhu, Y, Wang, H, “A Novel Polymer Composite Coating with High Thermal Conductivity and Unique Anti-Corrosion Performance.” Chem. Eng. J., 439 135660–135671 (2022)

    Article  CAS  Google Scholar 

  15. Isarn, I, Bonnaud, L, Massagués, L, Serra, À, Ferrando, F, “Enhancement of Thermal Conductivity in Epoxy Coatings Through the Combined Addition of Expanded Graphite and Boron Nitride Fillers.” Prog. Org. Coat., 133 299–308 (2019)

    Article  CAS  Google Scholar 

  16. Chen, Y, Xie, B, Long, J, Kuang, Y, Chen, X, Hou, M, Gao, J, Zhou, S, Fan, B, He, Y, Zhang, YT, Wong, CP, Wang, Z, Zhao, N, “Interfacial Laser-Induced Graphene Enabling High-Performance Liquid-Solid Triboelectric Nanogenerator.” Adv. Mater., 33 (44) 2104290–2104298 (2021)

    Article  CAS  Google Scholar 

  17. Li, X, Wu, B, Chen, P, Xia, R, Qian, J, “Covalently Interconnected Carbon Nanotubes Network Enhancing Thermal Conductivity of EP-Based Composite.” Compos. Commun., 40 101591–101596 (2023)

    Article  Google Scholar 

  18. Li, J, Cheng, R, Cheng, Z, Duan, C, Wang, B, Zeng, J, Xu, J, Tian, X, Chen, H, Gao, W, Chen, K, “Silver-Nanoparticle-Embedded Hybrid Nanopaper with Significant Thermal Conductivity Enhancement.” ACS Appl. Mater. Interfaces, 13 (30) 36171–36181 (2021)

    Article  CAS  PubMed  Google Scholar 

  19. Wang, X, Pu, Z, Yang, Y, Wei, B, Yang, S, “Ultra-High Thermal Conductive Epoxy-Based Copper/Graphite Nanoplatelets Materials for Heat Management Application.” Compos. Sci. Technol., 224 109454–109465 (2022)

    Article  CAS  Google Scholar 

  20. Fan, B, Xing, L, Yang, K, Zhou, F, He, Q, Tong, G, Wu, W, “Synergistically Enhanced Heat Conductivity-Microwave Absorption Capabilities of g-C3N4@Fe@C Hollow Micro-Polyhedra via Interface and Composition Modulation.” Chem. Eng. J., 451 138492–138503 (2023)

    Article  CAS  Google Scholar 

  21. An, L, Yu, Y, Cai, Q, Mateti, S, Li, LH, Chen, YI, “Hexagonal Boron Nitride Nanosheets: Preparation, heat Transport Property and Application as Thermally Conductive Fillers.” Prog. Mater. Sci., 138 101154–101190 (2023)

    Article  CAS  Google Scholar 

  22. Wu, W, Zheng, M, Lu, K, Liu, F, Song, Y-H, Liu, M, Dang, Z-M, “Thermally Conductive Composites Based on Hexagonal Boron Nitride Nanosheets for Thermal Management: Fundamentals to Applications.” Compos. Part A Appl. Sci. Manuf., 169 107533–107554 (2023)

    Article  CAS  Google Scholar 

  23. Li, Y, Huang, T, Chen, M, Wu, L, “Simultaneous Exfoliation and Functionalization of Large-Sized Boron Nitride Nanosheets for Enhanced Thermal Conductivity of Polymer Composite Film.” Chem. Eng. J., 442 136237–136247 (2022)

    Article  CAS  Google Scholar 

  24. Li, G, Ma, Y, Xu, H, Chen, L, An, Y, Gao, M, Zhou, H, Chen, J, “Hydroxylated Hexagonal Boron Nitride Nanoplatelets Enhance the Mechanical and Tribological Properties of Epoxy-Based Composite Coatings.” Prog. Org. Coat., 165 106731–106741 (2022)

    Article  CAS  Google Scholar 

  25. Han, Y, Ruan, K, Gu, J, “Multifunctional Thermally Conductive Composite Films Based on Fungal Tree-like Heterostructured Silver Nanowires@Boron Nitride Nanosheets and Aramid Nanofibers.” Angew. Chem. Int. Ed. Engl., 62 (5) 202216093–202216099 (2023)

    Article  Google Scholar 

  26. Wang, S, Feng, D, Guan, H, Guo, Y, Liu, X, Yan, C, Zhang, L, Gu, J, “Highly Efficient Thermal Conductivity of Polydimethylsiloxane Composites via Introducing ‘Line-Plane’–Like Hetero-Structured Fillers.” Compos. Part A Appl. Sci. Manuf., 157 106911–106919 (2022)

    Article  CAS  Google Scholar 

  27. Yang, X, Fan, S, Li, Y, Guo, Y, Li, Y, Ruan, K, Zhang, S, Zhang, J, Kong, J, Gu, J, “Synchronously Improved Electromagnetic Interference Shielding and Thermal Conductivity for Epoxy Nanocomposites by Constructing 3D Copper Nanowires/Thermally Annealed Graphene Aerogel Framework.” Compos. Part A Appl. Sci. Manuf., 128 105670–105678 (2020)

    Article  CAS  Google Scholar 

  28. Bai, Q, Xiong, Q, Li, C, Shen, Y, Uyama, H, “Hierarchical Porous Carbons from a Sodium Alginate/Bacterial Cellulose Composite for High-Performance Supercapacitor Electrodes.” Appl. Surf. Sci., 455 795–807 (2018)

    Article  CAS  Google Scholar 

  29. Liu, L, Lu, Y, Qiu, D, Wang, D, Ding, Y, Wang, G, Liang, Z, Shen, Z, Li, A, Chen, X, Song, H, “Sodium Alginate-Derived Porous Carbon: Self-template Carbonization Mechanism and Application in Capacitive Energy Storage.” J. Colloid Interface Sci., 620 284–292 (2022)

    Article  CAS  PubMed  Google Scholar 

  30. Hu, P, Xu, H, Pan, Y, Sang, X, Liu, R, “Upconversion Particle-Assisted NIR Polymerization Enables Microdomain Gradient Photopolymerization at Inter-Particulate Length Scale.” Nat. Commun., 14 (1) 3653–3661 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, B, Dong, Z, Li, J, Zhang, M, Zhang, K, “ZnO Nanowires-Decorated h-BN Hybrid for Enhancing the Tribological Properties of Epoxy Resin.” Prog. Org. Coat., 161 106493–106502 (2021)

    Article  CAS  Google Scholar 

  32. Wan, P, Zhao, N, Qi, F, Zhang, B, Xiong, H, Yuan, H, Liao, B, Ouyang, X, “Synthesis of PDA-BN@f-Al2O3 Hybrid for Nanocomposite Epoxy Coating with Superior Corrosion Protective Properties.” Prog. Org. Coat., 146 105713–105726 (2020)

    Article  CAS  Google Scholar 

  33. Li, Z, Yang, W, Jiang, B, Wang, C, Zhang, C, Wu, N, Zhang, C, Du, S, Li, S, Bai, H, Wang, X, Li, Y, “Engineering of the Core-Shell Boron Nitride@Nitrogen-Doped Carbon Heterogeneous Interface for Efficient Heat Dissipation and Electromagnetic Wave Absorption.” ACS Appl. Mater. Interfaces, 15 (5) 7578–7591 (2023)

    Article  CAS  PubMed  Google Scholar 

  34. Shi, N, Li, H, Li, X, Luo, H, Jin, J, Wang, J, Li, S, “ZIF-8 and Benzimidazole Co-Modified h-BN for Enhancing Anti-Corrosion Performance of Epoxy Coatings.” Prog. Org. Coat., 183 107808–107819 (2023)

    Article  CAS  Google Scholar 

  35. Sivasankar, K, Pal, S, Thiruppathi, M, Lin, CH, “Carbonization and Preparation of Nitrogen-Doped Porous Carbon Materials from Zn-MOF and Its Applications.” Materials, 13 (2) 264–276 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Singh, G, Lee, J, Bahadur, R, Karakoti, A, Yi, J, Vinu, A, “Highly Graphitized Porous Biocarbon Nanosheets with Tunable Micro-Meso Interfaces and Enhanced Layer Spacing for CO2 Capture and LIBs.” Chem. Eng. J., 433 134464–134474 (2022)

    Article  CAS  Google Scholar 

  37. Hong, JH, Kim, JK, Jung, DS, Kang, YC, “A Synthetic Strategy for Graphitized Carbon Hollow Nanospheres with Nano-Punched Holes Decorated with Bimetallic Selenide as Efficient Bifunctional Electrocatalysts for Rechargeable Li–O2 Batteries.” J. Mater. Chem. A, 11 (27) 14997–15005 (2023)

    Article  CAS  Google Scholar 

  38. Ju, J, Zhao, Z, Du, X, Sun, X, Liu, J, Li, W, “Thermally Conductive and Anti-Corrosive Epoxy Composite Coatings by Synchronously Incorporating Boron Nitride/Graphene Fillers and Polyvinyl Pyrrolidone.” Ceram. Int., 49 28854–28863 (2023)

    Article  CAS  Google Scholar 

  39. Xu, F, Zhu, J, Ye, P, Geng, H, Peng, J, Cui, Y, Bao, D, Lu, R, Shen, X, Zhu, H, Zhu, Y, Wang, H, “Outstanding Thermally Conductive and Anticorrosive Polymer Composite Coating via a Multifunctional Epoxy Curing Agent Zinc Dimethacrylate.” Chem. Eng. J., 473 145163–145175 (2023)

    Article  CAS  Google Scholar 

  40. Pan, D, Zhang, X, Yang, G, Shang, Y, Su, F, Hu, Q, Patil, RR, Liu, H, Liu, C, Guo, Z, “Thermally Conductive Anticorrosive Epoxy Nanocomposites with Tannic Acid-Modified Boron Nitride Nanosheets.” Ind. Eng. Chem. Res., 59 (46) 20371–20381 (2020)

    Article  CAS  Google Scholar 

  41. Lu, R, Xu, F, Cui, Y, Bao, D, Yuan, S, Sun, Y, Pei, L, Jiang, Y, Zhu, J, Wang, H, “Novel Thermal Conductivity and Anti-Corrosion Coating with Hydrophobic Properties for Heat Exchanger Applications.” Prog. Org. Coat., 186 108004–108012 (2024)

    Article  CAS  Google Scholar 

  42. Hu, C, Li, Y, Hu, Y, Zhao, Z, Bu, M, Li, Q, Du, X, Liao, Y, Wang, X, Li, W, “Preparation of a Thermally Conductive Phase-Change Coating with Good Anti-Corrosion.” Polym. Compos., 45(3) 2546–2557 (2024)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 21803025), the Natural Science Foundation of Jiangsu Province (No. BK20180583), the Science and Technology Support Program of Jiangsu Province (BE2022087), the Fundamental Research Funds for the Central Universities (JUSRP11711), and MOE & SAFEA for the 111 Project (B13025).

Author information

Authors and Affiliations

Authors

Contributions

LB contributed to writing—original draft, validation, investigation, and data curation. YZ contributed to investigation and formal analysis. CC contributed to investigation and methodology. BY and CC contributed to investigation and validation. RL contributed to methodology and visualization. SZ contributed to conceptualization and methodology. XS contributed to writing—review & editing, formal analysis, conceptualization, and project administration.

Corresponding author

Correspondence to Xinxin Sang.

Ethics declarations

Conflict of interest

The authors declare no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, L., Zhao, Y., Chen, C. et al. Preparation and performance study of thermally conductive coatings with mixed fillers. J Coat Technol Res (2024). https://doi.org/10.1007/s11998-024-00915-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11998-024-00915-6

Keywords

Navigation