Skip to main content

Advertisement

Log in

Damage morphology and force-deflection curves for impact loading of thick multilayer organic protective coating systems

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

An Author Correction to this article was published on 05 March 2024

This article has been updated

Abstract

The response of organic coatings to mechanical impact is crucial to their corrosion protection performance, particularly under offshore conditions. The paper categorizes and discusses four different types of response during the high-energy (3 to 20 J) impact of a falling ball-shaped weight on 14 multilayer organic offshore coating systems. The response types include plastic deformation, brittle (compressive) crushing, radial crack formation, and lateral delamination. Threshold and transition conditions are analyzed based on contact mechanics relationships. For the first time, complete force-deflection curves for this type of coating are recorded with an instrumented impact tester. The curves feature four characteristic points, namely a first local force maximum (FFS), the respective deflection at this force level (δFS), a maximum force (Fmax), and the respective deflection at this maximum force (δmax). These characteristic parameters are discussed in terms of coating system composition. Empirical equations for these parameters as well as for the damage size are derived. The results offer opportunities to quantitatively rank organic coatings with respect to their impact resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Change history

Abbreviations

a:

Contact radius

AC :

Contact area

AD :

Damage area

cL :

Lateral crack length

D:

Coating thickness

EC :

Young’s modulus coating material

ED :

Impact energy

EI :

Young’s modulus drop weight material

ES :

Young’s modulus substrate material

F:

Contact force

FA :

Anode area

FC :

Cathode area

FL :

Threshold force for lateral crack formation

FM :

Threshold force for median crack formation

Fmax :

Maximum force

FPL :

Threshold force for plastic deformation

g:

Gravity acceleration

H:

Height of fall

HC :

Hardness coating material

KIc :

Mode-I fracture toughness

rcorr :

Corrosion rate

RD :

Radius drop weight

t:

Time of measurement

vD :

Drop weight velocity

α:

Recovery angle

δ:

Deflection

δmax :

Deflection at maximum force

νC :

Poisson’s ratio coating material

νI :

Poisson ratio indenter material

νS :

Poison ratio substrate material

ρC :

Coating density

σC :

Flexural strength

σY :

Yield strength

References

  1. Momber, AW, Corrosion and Corrosion Protection of Wind Power Structures in Marine Environments Corrosion Protection Measures. Elsevier, London (2023)

    Google Scholar 

  2. Momber, AW, Marquardt, T, “Protective Coatings for Offshore Wind Energy Devices (OWEAs): A Review.” J. Coat. Technol. Res., 15 13–40. https://doi.org/10.1007/s11998-017-9979-5 (2018)

    Article  CAS  Google Scholar 

  3. Momber, AW, “Quantitative Performance Assessment of Corrosion Protection Systems for Offshore Wind Power Transmission Platforms.” Renew. Energy, 94 314–327. https://doi.org/10.1016/j.renene.2016.03.059 (2016)

    Article  Google Scholar 

  4. Momber, AW, Irmer, M, “Taber Abrasive Wear Resistance of Organic Offshore Wind Power Coatings at Varying Normal Forces.” J. Coat. Technol. Res., 18 729–740. https://doi.org/10.1007/s11998-020-00437-x (2021)

    Article  CAS  Google Scholar 

  5. Momber, AW, Irmer, M, “Distribution Parameters of a Plastic-Elastic Transition Function for Normal Force Effects on the Abrasive Wear of Organic Coatings.” J. Coat. Technol. Res., 19 1909–1911. https://doi.org/10.1007/s11998-022-00673-3 (2022)

    Article  CAS  Google Scholar 

  6. Momber, AW, Irmer, M, Kelm, D, “Response of Corrosion Protection Coating Systems for Offshore Components to High Compressive Loads During Lifting.” Mater. Corros., https://doi.org/10.1002/maco.202313835 (2023)

    Article  Google Scholar 

  7. Pedeferri, Pietro, Corrosion Science and Engineering. Springer International Publishing, Cham (2018)

    Book  Google Scholar 

  8. Norsok M-001, “Materials Selection.” Rev. 5, Standards Norway, Lysaker, Norway (2014)

  9. NACE SP0108, “Corrosion Control of Offshore Structures by Protective Coatings.” Standard Practice SP0108-2008, NACE Int., Houston, TX, USA (2008)

  10. VGB, “Corrosion Protection for Offshore Wind Structures Part 2: Requirements for Corrosion Protection Systems.” VGB-S-021-02-2018-04-EN, VGB PowerTech e.V., Essen, Germany (2018)

  11. Zorll, U, “Untersuchungen über Deformation und Rißbildung an Lackschichten bei stoßartiger Belastung.” Farbe und Lack, 81 (6) 505–507 (1975)

    Google Scholar 

  12. Zosel, A, “Ein Gerät zur Untersuchung der Schlagfestigkeit von Lackfilmen.” Farbe und Lack, 83 (1) 9–12 (1977)

    Google Scholar 

  13. Chen, L, Zou, C, Zang, M, Chen, S, “Single-Impact Failure of Multi-Layered Automotive Coatings: A Finite Element-Based Study.” Coatings, 13 (309) 1–23. https://doi.org/10.3390/coatings13020309 (2023)

    Article  CAS  Google Scholar 

  14. Toi, Y, Park, J-H, Nakai, N, Hara, Y, “Finite Element Analysis of Dynamic Damage Behaviors of Multi-Layer Coatings Under Transverse Impact.” Trans. Japan Soc. Mechan. Eng. Ser. A, 71 (712) 1632–1638. https://doi.org/10.1299/kikaia.71.1632 (2005)

    Article  CAS  Google Scholar 

  15. Zhang, N, Yang, F, Li, L, Shen, C, Castro, J, Lee, LJ, “Thickness Effect on Particle Erosion Resistance of Thermoplastic Polyurethane Coating on Steel Substrate.” Wear, 303 49–55. https://doi.org/10.1016/j.wear.2013.02.022 (2013)

    Article  CAS  Google Scholar 

  16. Liu, Y, Zou, C, Zang, M, Chen, S, ““Experimental Study on Mechanical Property and Stone-Chip Resistance of Automotive Coatings.” Mater. Res. Express, 9 01640. https://doi.org/10.1088/2053-1591/ac45bb (2022)

    Article  CAS  Google Scholar 

  17. Lonyuk, M, Bosma, M, Vijverberg, CAM, Bakker, A, Janssen, M, “Relation Between Chip Resistance and Mechanical Properties of Automotive Coatings.” Prog. Org. Coat., 61 308–315. https://doi.org/10.1016/j.porgcoat.2007.09.036 (2008)

    Article  CAS  Google Scholar 

  18. Lonyuk, M, Bosma, M, Riemslag, AC, Zuidema, J, Bakker, A, Janssen, M, “Stone Impact Damage of Automotive Coatings: A Laboratory Single-Impact Tester.” Prog. Org. Coat., 58 241–247. https://doi.org/10.1016/j.porgcoat.2006.09.032 (2008)

    Article  CAS  Google Scholar 

  19. Amadi, S, Ukpaka, PC, “The Concept of Coating as a Corrosion Preventive Measure for Oil and Gas Pipe Work.” App. Sci. Rep., 16 (1) 10–27. https://doi.org/10.15192/PSCP.ASR.2016.16.1.1027 (2016)

    Article  Google Scholar 

  20. Jia, C, Li, J, Wang, Q, Li, Z, Pu, L, “Analysis of Low-Energy Impact Damage to Epoxy Resin Film Based on Surface Damage Characteristics.” Prog. Org. Coat., 172 107147. https://doi.org/10.1016/j.porgcoat.2022.107147 (2022)

    Article  CAS  Google Scholar 

  21. Zou, C, Yang, H, Xu, X, Zang, M, Chen, S, “Computational Modeling of Impact Failure of Polymer Coatings.” Composit. Struct., 291 115576. https://doi.org/10.1016/j.compstruct.2022.115576 (2022)

    Article  CAS  Google Scholar 

  22. Zou, C, Guo, X, Xu, X, Zang, M, Chen, S, “Large Deformation Delamination in Polymer Coatings: Discontinuous Galerkin/Cohesive Zone Modeling.” Int. J. Mech. Soc., 232 107635. https://doi.org/10.1016/j.ijmecsci.2022.107635 (2022)

    Article  Google Scholar 

  23. Momber, AW, “A Comment on the Impact Resistance of Organic Offshore Coatings at Low Temperatures.” Cold Regions Sci. Technol., 140 1–4. https://doi.org/10.1016/j.coldregions.2017.04.004 (2017)

    Article  Google Scholar 

  24. Momber, AW, Irmer, M, Glück, N, “Performance Characteristics of Protective Coatings Under Low-Temperature Offshore Conditions. Part 2: Surface Status, Hoarfrost Accretion, and Mechanical Properties.” Cold Regions Sci. Technol., 127 109–114. https://doi.org/10.1016/j.coldregions.2016.04.009 (2016)

    Article  Google Scholar 

  25. Wagih, A, Maimi, P, Blanco, N, Costa, J, “A Quasi-Static Indentation Test to Elucidate the Sequence of Damage Events in Low Velocity Impacts on Composite Laminates.” Compos. Part A Appl. Sci. Manufact., 82 180–189. https://doi.org/10.1016/j.compositesa.2015.11.041 (2016)

    Article  CAS  Google Scholar 

  26. Zucchelli, A, Minak, G, Ghelli, D, “Low-Velocity Impact Behavior of Vitreous-Enameled Steel Plates.” Int. J. Impact. Eng., 37 673–684. https://doi.org/10.1016/j.ijimpeng.2009.12.003 (2020)

    Article  Google Scholar 

  27. Ghelli, D, D’Ubaldo, O, Santulli, C, Nisini, E, Minak, G, “Falling Weight Impact and Indentation Damage Characterisation of Sandwich Panels for Marine Applications.” Open J. Compos. Mater., 2 8–14. https://doi.org/10.4236/ojcm.2012.21002 (2012)

    Article  CAS  Google Scholar 

  28. Vieille, B, Casado, VM, Bouvet, C, “About the Impact Behavior of Woven-Ply Carbon Fiber-Reinforced Thermoplastic- and Thermosetting-Composites: A Comparative Study.” Compos. Struct., 101 9–21. https://doi.org/10.1016/j.compstruct.2013.01.025 (2013)

    Article  Google Scholar 

  29. Hachemane, B, Zitoune, R, Bezzazi, B, Bouvet, C, “Sandwich Composites Impact and Indentation Behaviour Study.” Composit. Part B Eng., 51 1–10. https://doi.org/10.1016/j.compositesb.2013.02.014 (2013)

    Article  CAS  Google Scholar 

  30. Goodarz, M, Bahrami, SH, Sadighi, M, Saber-Samandari, S, “The Influence of Graphene Reinforced Electrospun Nano-Interlayers on Quasi-Static Indentation Behavior of Fiber-Reinforced Epoxy Composites.” Fibers Polym., 18 (2) 322–333. https://doi.org/10.1007/s12221-017-6700-3 (2017)

    Article  CAS  Google Scholar 

  31. Brindle, AR, Zhang, X, Predicting the Compression-After-Impact Performance of Carbon Fibre Composites Based on Impact Response. Proc. 17th Int. Conf. in Composite Mater. (ICCM17), Edinburgh, Scotland, 27-31 July (2009)

  32. Balakrishnan, VS, Hart-Rawung, T, Buhl, J, Seidlitz, H, Bambach, M, “Impact and Damage Behaviour of FRP-Metal Hybrid Laminates Made by the Reinforcement of Glass Fibers on 22mnb5 Metal Surface.” Compos. Sci. Technol., 187 107949. https://doi.org/10.1016/j.compscitech.2019.107949 (2020)

    Article  CAS  Google Scholar 

  33. Wang, J, Waas, AM, Wang, H, Experimental Study on the Low-Velocity Impact Behavior of Foam-Core Sandwich Panels.” Paper AIAA 2012-1701, Proc 53rd AIAA/ASME/ASCE/ AHS/ASC Structures, Struct. Dynamics and Mater. Conf., Honolulu, Hawaii, 23-26 April 2012. https://doi.org/10.2514/6.2012-1701 (2012)

  34. Abrate, Serge (ed) Impact Engineering of Composite Structures. Springer Vienna, Vienna (2011)

    Google Scholar 

  35. Landowski, M, Strugała, G, Budzik, M, Imielinska, K, “Impact Damage in SiO2 Nanoparticle Enhanced Epoxy-Carbon Fibre Composites.” Composit. Part B, 113 91–99. https://doi.org/10.1016/j.compositesb.2017.01.003 (2017)

    Article  CAS  Google Scholar 

  36. Liu, Y, Hu, H, Long, H, Zhao, L, “Impact Compressive Behavior of Warp-Knitted Spacer Fabrics for Protective Applications.” Textile Res. J., 82 (8) 773–788. https://doi.org/10.1177/0040517511433 (2012)

    Article  CAS  Google Scholar 

  37. Tuo, H, Lu, Z, Ma, X, Zhang, C, Chen, S, “An Experimental and Numerical Investigation on Low-Velocity Impact Damage and Compression After-Impact Behavior of Composite Laminates.” Composit. Part B, 167 329–341. https://doi.org/10.1016/j.compositesb.2018.12.043 (2019)

    Article  CAS  Google Scholar 

  38. Oliver, WC, Pharr, GM, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments.” J. Mater. Res., 7 (6) 1564–1583. https://doi.org/10.1557/JMR.1992.1564 (1992)

    Article  ADS  CAS  Google Scholar 

  39. ISO 12944-9, “Protective Paint Systems and Laboratory Performance Test Methods for Offshore and Related Structures.” ISO, Geneva, Switzerland (2018)

  40. Baier, R, Hörnig, M, Aktuelles zur Ertüchtigung von Korrosionsschutzbeschichtungen im Stahlwasserbau durch Smart Repair. In: Kolloquium Korrosionsschutz und Tragfähigkeit bestehender Stahlwasserbauverschlüsse, Bundesanstalt für Wasserbau, Karlsruhe, Germany pp 35-50 (2017)

  41. “Polymer Data Handbook.” Oxford University Press, Inc. (1999)

  42. Voiconi, T, Negru, R, Linul, E, Marsavina, L, Filipescu, H, “The Notch Effect on Fracture of Polyurethane Materials.” Frattura ed Integrità Strutturale, 30 101–108. https://doi.org/10.3221/IGF-ESIS.30.14 (2014)

    Article  Google Scholar 

  43. Jamali, J, Ashknani, A, Al-Kanderi, A, Hussain, F, “Mode I Fracture Testing of Polyester.” Proced. Struct. Integ., 33 832–842. https://doi.org/10.1016/j.prostr.2021.10.093 (2021)

    Article  Google Scholar 

  44. Drah, A, Tomic, N, Vuksanovic, M, Dokic, V, Danicic, D, Marinkovic, A, Mainemann, R, “Microvickers Hardness Determination of Unsaturated Polyester Resins Reinforced with Alumina Based Reinforcement.” Tehnika, 27 (5) 621–625. https://doi.org/10.5937/tehnika1805621D (2018)

    Article  Google Scholar 

  45. ISO 6603-2, Plastics-Determination of Puncture Impact Behaviour of Rigid Plastics-Part 2: Instrumented Impact Testing. ISO, Geneva, Switzerland (2002)

  46. Richtlinie 2014/32/EU des Europäischen Parlaments und des Rates zur Harmonisierung der Rechtsvorschriften der Mitgliedstaaten über die Bereitstellung von Messgeräten auf dem Markt (Neufassung).“ Amtsblatt der Europäischen Union, L96/149 (2014)

  47. Swain, MV, Hagan, JT, “Indentation Plasticity and the Ensuing Fracture of Glass.” J. Phys. D: Appl. Phys., 9 2201–2214. https://doi.org/10.1088/0022-3727/9/15/011 (1976)

    Article  ADS  CAS  Google Scholar 

  48. Momber, AW, “Fracture Features in Soda-Lime Glass After Testing with a Spherical Indenter.” J. Mater. Sci., 46 4494–4508. https://doi.org/10.1007/s10853-011-5343-9 (2011)

    Article  ADS  CAS  Google Scholar 

  49. Knight, CG, Swain, MV, Chaudri, MM, “Impact of Small Steel Spheres on Glass Surfaces.” J. Mater. Sci., 12 1573–1586. https://doi.org/10.1007/BF00542808 (1977)

    Article  ADS  Google Scholar 

  50. Tabor, D, The Hardness of Metals. Clarendon Press, Oxford, UK (1951)

    Google Scholar 

  51. Zorll, U, “Schlagfestigkeitsbestimmung von Blechlackierungen nach dem Kugelstoßversuch.” Metalloberfläche, 29 (12) 577–616 (1975)

    Google Scholar 

  52. Mouginot, R, “Blunt or Sharp Indenters: A Size Transition Analysis.” J. Am. Ceram. Soc., 71 (8) 658–661. https://doi.org/10.1111/j.1151-2916.1988.tb06384.x (1988)

    Article  CAS  Google Scholar 

  53. Knotek, O, Bosserhoff, B, Schrey, A, Leyendecker, T, Lemmer, O, Esser, S, “A New Technique for Testing the Impact Load of Thin Films: The Coating Impact Test.” Surface Coat. Technol., 54 (55) 102–107. https://doi.org/10.1016/S0257-8972(09)90035-4 (1992)

    Article  Google Scholar 

  54. Popov, V, Kontaktmechanik und Reibung. Springer-Verlag, Berlin-Heidelberg (2010)

    Book  Google Scholar 

  55. Lawn, BR, Evans, AG, “A Model for Crack Initiation in Elastic/Plastic Indentation Fields.” J. Mater. Sci., 12 2195–2199. https://doi.org/10.1007/BF00552240 (1977)

    Article  ADS  CAS  Google Scholar 

  56. Hsueh, CH, Miranda, P, “Modeling of Contact-Induced Radial Cracking in Ceramic Bilayer Coatings on Compliant Substrates.” J. Mater. Res., 18 (5) 1275–1283. https://doi.org/10.1557/JMR.2003.0175 (2003)

    Article  ADS  CAS  Google Scholar 

  57. Rhee, YW, Kim, HW, Deng, Y, Lawn, BR, “Brittle Fracture Versus Quasi Plasticity in Ceramics: A Simple Predictive Index.” J. Am. Ceram. Soc., 84 (3) 561–565. https://doi.org/10.1111/j.1151-2916.2001.tb00698.x (2001)

    Article  CAS  Google Scholar 

  58. Qasim, T, Bush, MB, Hu, X, Lawn, BR, “Contact Damage in Brittle Coating Layers: Influence of Surface Curvature.” J. Biomed. Mater. Res. Part B, 73 179–185. https://doi.org/10.1002/jbm.b.30188 (2005)

    Article  CAS  Google Scholar 

  59. Marshall, DB, Lawn, BR, Evans, AG, “Elastic/Plastic Indentation Damage in Ceramics: The Lateral Crack System.” J. Amer. Ceram. Soc., 65 (11) 561–566. https://doi.org/10.1111/j.1151-2916.1982.tb10782.x (1982)

    Article  CAS  Google Scholar 

  60. Chen, J, Bull, SJ, “Indentation Fracture and Toughness Assessment for Thin Optical Coatings on Glass.” J. Phys. D: Appl. Phys., 40 5401–5417. https://doi.org/10.1088/0022-3727/40/18/S01 (2007)

    Article  ADS  CAS  Google Scholar 

  61. Chiu, C, Liou, Y, “Low-Velocity Impact Damage in Brittle Coatings.” J. Mater. Sci., 30 1018–1024. https://doi.org/10.1007/BF01178439 (1995)

    Article  ADS  CAS  Google Scholar 

  62. Fischer-Cripps, AC, Introduction to Contact Mechanics. Springer, Heidelberg (2007)

    Book  Google Scholar 

  63. Chen, XW, Yue, ZQ, “Nonlinear Contact Force Law for Spherical Indentation of FGM Coated Elastic Substrate: An Extension of Hertz’s Solution.” Int. J. Solids Struct., 191–192 550–565. https://doi.org/10.1016/j.ijsolstr.2019.12.016 (2020)

    Article  Google Scholar 

  64. Goltsberg, R, Etsion, I, “A Universal Model for the Load-Displacement Relation in an Elastic Coated Spherical Contact.” Wear, 322–323 126–132. https://doi.org/10.1016/j.wear.2014.11.002 (2015)

    Article  CAS  Google Scholar 

  65. Bandyopadhyay, S, “Review of the Microscopic and Macroscopic Aspects of Fracture of Unmodified and Modified Epoxy Resins.” Mater. Sci. Eng. A, 125 157–184. https://doi.org/10.1016/0921-5093(90)90167-2 (1990)

    Article  Google Scholar 

  66. Mercier, D, Mandrillon, V, Parry, G, Verdier, M, Estevez, R, Bréchet, Y, Maindron, T, “Investigation of the Fracture of Very Thin Amorphous Alumina Film During Spherical Nanoindentation.” Thin Solid Films, 638 34–47. https://doi.org/10.1016/j.tsf.2017.07.040 (2017)

    Article  ADS  CAS  Google Scholar 

  67. Bielawski, M, Beres, W, “FE Modelling of Surface Stresses in Erosion-Resistant Coatings Under Single Particle Impact.” Wear, 262 167–175. https://doi.org/10.1016/j.wear.2006.04.009 (2007)

    Article  CAS  Google Scholar 

  68. Xiao, Y, Shi, W, Luo, J, “Indentation for Evaluating Cracking and Delamination of Thin Coatings Using Finite Element Analysis.” Vacuum, 122 17–30. https://doi.org/10.1016/j.vacuum.2015.09.003 (2015)

    Article  ADS  CAS  Google Scholar 

  69. Li, H, Wang, D, Xiao, Z, Qin, Z, Xiong, J, Han, Q, Wang, X, “Investigation of Vibro-Impact Resistance of Fiber Reinforced Composite Plates with Polyurea Coating with Elastic Constraints.” Aerospace Sci. Technol., 121 107196. https://doi.org/10.1016/j.ast.2021.107169 (2021)

    Article  Google Scholar 

  70. Sohn, MS, Hu, XZ, Kim, JK, Walker, L, “Impact Damage Characterisation of Carbon Fibre/Epoxy Composites with Multi-Layer Reinforcement.” Compos. Part B, 31 681–691. https://doi.org/10.1016/S1359-8368(00)00028-7 (2000)

    Article  Google Scholar 

  71. Chen, X, Hutchinson, JW, Evans, AG, “The Mechanics of Indentation Induced Lateral Cracking.” J. Am. Ceram. Soc., 88 (5) 1233–1238. https://doi.org/10.1111/j.1551-2916.2005.00281.x (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The investigations were funded by the German Federal Ministry of Education and Research (BMBF) in the frame of the innovation initiative “Wachstumskerne-Unternehmen Region”, sub-program: “OWS-MV: Offshore Wind Solutions-Mecklenburg-Vorpommern”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. W. Momber.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Damage morphologies and force-deflection curves

See Figs. 16, 17, 18 and 19.

Fig. 16
figure 16

Failure/damage modes in coating system 5 (scale bars: 5 mm) and force-deflection curves for three impact intensities (energies). (Note the different axis scalings.) (a) Impact energy: 3 J (plastic response with permanent depression and wall formation); see Fig. 6. (b) Impact energy: 7 J (plastic-elastic response with central damage, plastic deformation and radial cracks). (c) Impact energy: 20 J (plastic-elastic response with central damage and radial and lateral cracks). Lateral cracks lead to coating delamination; see Fig. 10

Fig. 17
figure 17

Adhesive failure in the intermediate layers (system 12) and force-deflection curve at high impact energy (20 J). (Scale bar: 5 mm)

Fig. 18
figure 18

Transition from radial cracking to lateral cracking (scale bars: 5 mm) with increasing impact energy and force-deflection curves (system 10). (Note the different axis scalings.) (a) Impact energy: 7 J (plastic-elastic response with radial cracking). (b) Impact energy: 20 J (plastic-elastic response with lateral cracking and coating delamination)

Fig. 19
figure 19

Adhesive failure after impact loading (scale bars: 5 mm) and force-deflection curves (system 8). (Note the different axis scalings.) (a) Impact energy: 7 J (plastic-elastic response with radial cracking and partial lip/wall cracking). (b) Impact energy: 20 J (plastic-elastic response with intra-layer delamination)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momber, A.W., Irmer, M., Kelm, D. et al. Damage morphology and force-deflection curves for impact loading of thick multilayer organic protective coating systems. J Coat Technol Res (2023). https://doi.org/10.1007/s11998-023-00829-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11998-023-00829-9

Keywords

Navigation