Skip to main content
Log in

Integration of antifouling properties into epoxy coatings: a review

  • Review Article
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The need for nontoxic antifouling coatings has encouraged material scientists to develop a class of organic coatings for diverse applications. As a versatile thermosetting resin and well known for coating application, antifouling characteristics have been integrated into epoxy along with anticorrosion and adhesive functions. Accordingly, both micro- and macro-biofoulings have been successfully controlled by using epoxy-based antifouling coatings. Epoxy nanocomposites, silicon-grafted epoxy, epoxy-aided conductive polymer blends, and nanocomposites are important antifouling epoxy variants far and wide examined in developing epoxy-based coatings. Besides, some purpose-specific multifunctional smart coatings based on epoxy with antifouling features are used to integrate several functions into one material. This review discusses various types of epoxy-based antifouling coatings. The ability of nanomaterials, siloxanes, and conducting polymers to induce antifouling activity into the epoxy and corresponding antifouling mechanisms is also covered. The review concludes with the enormous potential of antifouling epoxy coatings as cost-effective, environmentally sustainable solution to biofouling in diverse industrial applications. Finally, the future ahead of antifouling epoxy coating is patterned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AgNPs:

Silver nanoparticles

Ag–RGO–cur:

Silver–reduced GO–curcumin

APDMS:

Aminopropyl-terminated pendant groups

APDMS:

PDMS with aminopropyl-terminated pendant groups

APTES:

3-Aminopropyltriethoxysilane

BBP:

Bromine-benzyl-disubstituted polyaniline

Br-PANI:

Bromo-substituted PANI

DGEBA:

Diglycidyl ethers of bisphenol-A

GO:

Graphene oxide

HENC:

Nanofibrillar cellulose-hyperbranched epoxy composite

h-PDMS:

Hydroxyl-terminated PDMS

HTPDMS:

Epoxy coating with hydroxyl-terminated PDMS

ICN:

Inter-crosslinking network mechanism

NFC:

Nanofibrillar cellulose

PANI:

Polyaniline

PDMS:

Poly (dimethyl siloxane)

PEG:

Poly (ethylene glycol)

PmAP:

Poly (m-aminophenol)

RGO:

Reduced graphene oxide

RGO-ID+ :

Cationic reduced graphene oxide

SEM:

Scanning electron microscopy

TEA:

Triethanol amine

TBT:

Tributyltin

UEH-MCs:

Underwater epoxy hardener microcapsules

VOC:

Volatile organic content

References

  1. Bixler, GD, Bhushan, B, “Biofouling: Lessons from Nature.” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 370 2381–2417. https://doi.org/10.1098/rsta.2011.0502 (2012)

    Article  CAS  Google Scholar 

  2. Flemming, H-C, “Biofouling in Water Systems—Cases, Causes and Countermeasures.” Appl. Microbiol. Biotechnol., 59 629–640. https://doi.org/10.1007/s00253-002-1066-9 (2002)

    Article  CAS  Google Scholar 

  3. Yebra, DM, Kiil, S, Dam-Johansen, K, “Antifouling Technology—Past, Present and Future Steps Towards Efficient and Environmentally Friendly Antifouling Coatings.” Prog. Org. Coat., 50 75–104. https://doi.org/10.1016/j.porgcoat.2003.06.001 (2004)

    Article  CAS  Google Scholar 

  4. Xie, Q, Pan, J, Ma, C, Zhang, G, “Dynamic Surface Antifouling: Mechanism and Systems.” Soft Matter, 15 1087–1107. https://doi.org/10.1039/C8SM01853G (2019)

    Article  CAS  Google Scholar 

  5. Bleile, H, Rodgers, SD, “Marine Coatings.” In: Buschow, KHJ, Cahn, RW, Flemings, MC, Ilschner, B, Kramer, EJ, Mahajan, S, Veyssière, P (eds.) Encyclopedia of Materials: Science and Technology, pp. 5174–5185. Elsevier, Oxford. https://doi.org/10.1016/B0-08-043152-6/00899-8 (2001)

    Chapter  Google Scholar 

  6. Desher, AA, “Biofouling Impacts on the Environment and Ship Energy Efficiency.” World Maritime University Dissertations, p. 617 (2018)

  7. Selim, MS, Shenashen, MA, El-Safty, SA, Higazy, SA, Selim, MM, Isago, H, Elmarakbi, A, “Recent Progress in Marine Foul-Release Polymeric Nanocomposite Coatings.” Prog. Mater. Sci., 87 1–32. https://doi.org/10.1016/j.pmatsci.2017.02.001 (2017)

    Article  CAS  Google Scholar 

  8. ECO, “Global Project to Address Bio-Invasions via Ships’ Hulls.” ECO Magazine. https://www.ecomagazine.com/news/regulation/global-project-to-address-bio-invasions-via-ships-hulls (2020)

  9. Li, Y, Ning, C, “Latest Research Progress of Marine Microbiological Corrosion and Bio-Fouling, and New Approaches of Marine Anti-corrosion and Anti-fouling.” Bioact. Mater., 4 189–195. https://doi.org/10.1016/j.bioactmat.2019.04.003 (2019)

    Article  Google Scholar 

  10. Zhang, H, Liang, Y, Wang, P, Zhang, D, “Design of Slippery Organogel Layer with Room-Temperature Self-healing Property for Marine Anti-fouling Application.” Prog. Org. Coat., 132 132–138. https://doi.org/10.1016/j.porgcoat.2019.03.020 (2019)

    Article  CAS  Google Scholar 

  11. Figueiredo, J, Loureiro, S, Martins, R, “Hazard of Novel Anti-fouling Nanomaterials and Biocides DCOIT and Silver to Marine Organisms.” Environ. Sci. Nano, 7 1670–1680. https://doi.org/10.1039/D0EN00023J (2020)

    Article  CAS  Google Scholar 

  12. Thomas, TE, Robinson, MG, “The Physiological Effects of the Leachates from a Self-polishing Organotin Antifouling Paint on Marine Diatoms.” Mar. Environ. Res., 18 215–229. https://doi.org/10.1016/0141-1136(86)90034-6 (1986)

    Article  CAS  Google Scholar 

  13. Bat, L, Gündoğdu, A, Sezgïn, M, Çulha, M, Gönlügür, G, Akbulut, M, Türüne, D, Toksisitesi, A, “Acute Toxicity of Zinc, Copper and Lead to Three Species of Marine Organisms from the Sinop Peninsula, Black Sea.” Turkish J. Bio., 23 537–544 (1999)

    CAS  Google Scholar 

  14. Ananda Kumar, S, Sasikumar, A, “Studies on Novel Silicone/Phosphorus/Sulphur Containing Nano-hybrid Epoxy Anticorrosive and Antifouling Coatings.” Prog. Org. Coat., 68 189–200. https://doi.org/10.1016/j.porgcoat.2010.02.005 (2010)

    Article  CAS  Google Scholar 

  15. Evans, SM, “Tributyltin Pollution: The Catastrophe That Never Happened.” Mar. Pollut. Bull., 38 629–636. https://doi.org/10.1016/S0025-326X(99)00040-5 (1999)

    Article  CAS  Google Scholar 

  16. Paradas, WC, Amado Filho, GM, “Are Metals of Antifouling Paints Transferred to Marine Biota?” Braz. J. Oceanogr., 55 51–56. https://doi.org/10.1590/S1679-87592007000100006 (2007)

    Article  Google Scholar 

  17. Lewis, JA, “27—Non-silicone Biocide-Free Antifouling Solutions.” In: Hellio, C, Yebra, D (eds.) Advances in Marine Antifouling Coatings and Technologies, pp. 709–724. Woodhead Publishing, Cambridge. https://doi.org/10.1533/9781845696313.4.709 (2009)

    Chapter  Google Scholar 

  18. Telegdi, J, Trif, L, Románszki, L, “5—Smart Anti-biofouling Composite Coatings for Naval Applications.” In: Montemor, MF (ed.) Smart Composite Coatings and Membranes, pp. 123–155. Woodhead Publishing, Cambridge. https://doi.org/10.1016/B978-1-78242-283-9.00005-1 (2016)

    Chapter  Google Scholar 

  19. Dalsin, JL, Messersmith, PB, “Bioinspired Antifouling Polymers.” Mater. Today, 8 38–46. https://doi.org/10.1016/S1369-7021(05)71079-8 (2005)

    Article  CAS  Google Scholar 

  20. Yonehara, Y, Yamashita, H, Kawamura, C, Itoh, K, “A New Antifouling Paint Based on a Zinc Acrylate Copolymer.” Prog. Org. Coat., 42 150–158. https://doi.org/10.1016/S0300-9440(01)00157-6 (2001)

    Article  CAS  Google Scholar 

  21. Chen, R, Li, Y, Tang, L, Yang, H, Lu, Z, Wang, J, Liu, L, Takahashi, K, “Synthesis of Zinc-Based Acrylate Copolymers and Their Marine Antifouling Application.” RSC Adv., 7 40020–40027 (2017)

    Article  CAS  Google Scholar 

  22. Yang, R, Jang, H, Stocker, R, Gleason, KK, “Synergistic Prevention of Biofouling in Seawater Desalination by Zwitterionic Surfaces and Low-Level Chlorination.” Adv. Mater., 26 1711–1718. https://doi.org/10.1002/adma.201304386 (2014)

    Article  CAS  Google Scholar 

  23. Wu, J, Zhao, C, Hu, R, Lin, W, Wang, Q, Zhao, J, Bilinovich, SM, Leeper, TC, Li, L, Cheung, HM, Chen, S, Zheng, J, “Probing the Weak Interaction of Proteins with Neutral and Zwitterionic Antifouling Polymers.” Acta Biomater., 10 751–760. https://doi.org/10.1016/j.actbio.2013.09.038 (2014)

    Article  CAS  Google Scholar 

  24. Statz, A, Finlay, J, Dalsin, J, Callow, M, Callow, JA, Messersmith, PB, “Algal Antifouling and Fouling-Release Properties of Metal Surfaces Coated with a Polymer Inspired by Marine Mussels.” Biofouling, 22 391–399. https://doi.org/10.1080/08927010601004890 (2006)

    Article  CAS  Google Scholar 

  25. Wisniewski, N, Reichert, M, “Methods for Reducing Biosensor Membrane Biofouling.” Colloids Surf. B Biointerfaces, 18 197–219. https://doi.org/10.1016/S0927-7765(99)00148-4 (2000)

    Article  CAS  Google Scholar 

  26. Chae, KH, Jang, YM, Kim, YH, Sohn, O-J, Rhee, JI, “Anti-fouling Epoxy Coatings for Optical Biosensor Application Based on Phosphorylcholine.” Sens. Actuators B Chem., 124 153–160. https://doi.org/10.1016/j.snb.2006.12.012 (2007)

    Article  CAS  Google Scholar 

  27. Vasilev, K, Cook, J, Griesser, HJ, “Antibacterial Surfaces for Biomedical Devices.” Expert Rev. Med. Devices, 6 (5) 553–567 https://doi.org/10.1586/erd.09.36 (2009)

    Article  Google Scholar 

  28. Harding, JL, Reynolds, MM, “Combating Medical Device Fouling.” Trends Biotechnol., 32 140–146. https://doi.org/10.1016/j.tibtech.2013.12.004 (2014)

    Article  CAS  Google Scholar 

  29. Willcox, MDP, Hume, EBH, Aliwarga, Y, Kumar, N, Cole, N, “A Novel Cationic-Peptide Coating for the Prevention of Microbial Colonization on Contact Lenses.” J. Appl. Microbiol., 105 1817–1825. https://doi.org/10.1111/j.1365-2672.2008.03942.x (2008)

    Article  CAS  Google Scholar 

  30. Zhang, S, Yang, X, Tang, B, Yuan, L, Wang, K, Liu, X, Zhu, X, Li, J, Ge, Z, Chen, S, “New Insights into Synergistic Antimicrobial and Antifouling Cotton Fabrics via Dually Finished with Quaternary Ammonium Salt and Zwitterionic Sulfobetaine.” Chem. Eng. J., 336 123–132. https://doi.org/10.1016/j.cej.2017.10.168 (2018)

    Article  CAS  Google Scholar 

  31. Donlan, RM, “Biofilm Formation: A Clinically Relevant Microbiological Process.” Clin. Infect. Dis., 33 1387–1392. https://doi.org/10.1086/322972 (2001)

    Article  CAS  Google Scholar 

  32. Li, X, Xing, Y, Jiang, Y, Ding, Y, Li, W, “Antimicrobial Activities of ZnO Powder-Coated PVC Film to Inactivate Food Pathogens.” Int. J. Food Sci. Technol., 44 2161–2168. https://doi.org/10.1111/j.1365-2621.2009.02055.x (2009)

    Article  CAS  Google Scholar 

  33. Conte, A, Buonocore, GG, Bevilacqua, A, Sinigaglia, M, Del Nobile, MA, “Immobilization of Lysozyme on Polyvinylalcohol Films for Active Packaging Applications.” J. Food Prot., 69 866–870. https://doi.org/10.4315/0362-028X-69.4.866 (2006)

    Article  CAS  Google Scholar 

  34. Bixler, GD, Theiss, A, Bhushan, B, Lee, SC, “Anti-fouling Properties of Microstructured Surfaces Bio-Inspired by Rice Leaves and Butterfly Wings.” J. Colloid Interface Sci., 419 114–133. https://doi.org/10.1016/j.jcis.2013.12.019 (2014)

    Article  CAS  Google Scholar 

  35. Magin, CM, Cooper, SP, Brennan, AB, “Non-toxic Antifouling Strategies.” Mater. Today, 13 36–44. https://doi.org/10.1016/S1369-7021(10)70058-4 (2010)

    Article  CAS  Google Scholar 

  36. Damodaran, VB, Murthy, NS, “Bio-Inspired Strategies for Designing Antifouling Biomaterials.” Biomater. Res., 20 18. https://doi.org/10.1186/s40824-016-0064-4 (2016)

    Article  CAS  Google Scholar 

  37. Bakhshandeh, E, Jannesari, A, Ranjbar, Z, Sobhani, S, Saeb, MR, “Anti-corrosion Hybrid Coatings Based on Epoxy–Silica Nano-composites: Toward Relationship Between the Morphology and EIS Data.” Prog. Org. Coat., 77 1169–1183. https://doi.org/10.1016/j.porgcoat.2014.04.005 (2014)

    Article  CAS  Google Scholar 

  38. Bahlakeh, G, Ghaffari, M, Saeb, MR, Ramezanzadeh, B, De Proft, F, Terryn, H, “A Close-Up of the Effect of Iron Oxide Type on the Interfacial Interaction Between Epoxy and Carbon Steel: Combined Molecular Dynamics Simulations and Quantum Mechanics.” J. Phys. Chem. C, 120 11014–11026. https://doi.org/10.1021/acs.jpcc.6b03133 (2016)

    Article  CAS  Google Scholar 

  39. Vijayan, PP, Hany El-Gawady, YM, Al-Maadeed, MASA, “Halloysite Nanotube as Multifunctional Component in Epoxy Protective Coating.” Ind. Eng. Chem. Res., 55 11186–11192. https://doi.org/10.1021/acs.iecr.6b02736 (2016)

    Article  CAS  Google Scholar 

  40. Vijayan, PP, Pionteck, J, Thomas, S, “Volume Shrinkage and Cure Kinetics in Carboxyl-Terminated Poly(Butadiene-Co-acrylonitrile) (CTBN) Modified Epoxy/Clay Nanocomposites.” J. Macromol. Sci. Part A, 52 353–359. https://doi.org/10.1080/10601325.2015.1018805 (2015)

    Article  CAS  Google Scholar 

  41. Vijayan, PP, Puglia, D, Rastin, H, Saeb, MR, Shojaei, B, Formela, K, “Cure Kinetics of Epoxy/MWCNTs Nanocomposites: Isothermal Calorimetric and Rheological Analyses.” Prog. Org. Coat., 108 75–83. https://doi.org/10.1016/j.porgcoat.2017.04.005 (2017)

    Article  CAS  Google Scholar 

  42. Nonahal, M, Rastin, H, Saeb, MR, Sari, MG, Moghadam, MH, Zarrintaj, P, Ramezanzadeh, B, “Epoxy/PAMAM Dendrimer-Modified Graphene Oxide Nanocomposite Coatings: Nonisothermal Cure Kinetics Study.” Prog. Org. Coat., 114 233–243. https://doi.org/10.1016/j.porgcoat.2017.10.023 (2018)

    Article  CAS  Google Scholar 

  43. Jouyandeh, M, Tikhani, F, Hampp, N, Akbarzadeh Yazdi, D, Zarrintaj, P, Reza Ganjali, M, Reza Saeb, M, “Highly Curable Self-healing Vitrimer-Like Cellulose-Modified Halloysite Nanotube/Epoxy Nanocomposite Coatings.” Chem. Eng. J., 396 125196. https://doi.org/10.1016/j.cej.2020.125196 (2020)

    Article  CAS  Google Scholar 

  44. Vijayan, PP, Harikrishnan, MG, Puglia, D, Vijayan, PP, Kenny, JM, Thomas, S, “Solvent Uptake of Liquid Rubber Toughened Epoxy/Clay Nanocomposites.” Adv. Polym. Technol.https://doi.org/10.1002/adv.21531 (2016)

    Article  Google Scholar 

  45. Yang, J, Li, J, Jia, X, Li, Y, Song, H, “Fabrication of Robust and Transparent Slippery Coating with Hot Water Repellency, Antifouling Property, and Corrosion Resistance.” ACS Appl. Mater. Interfaces, 12 28645–28654. https://doi.org/10.1021/acsami.0c06743 (2020)

    Article  CAS  Google Scholar 

  46. Chen, R, Xie, Q, Zeng, H, Ma, C, Zhang, G, “Non-elastic Glassy Coating with Fouling Release and Resistance Abilities.” J. Mater. Chem. A, 8 380–387 (2020)

    Article  CAS  Google Scholar 

  47. Charnley, M, Textor, M, Acikgoz, C, “Designed Polymer Structures with Antifouling–Antimicrobial Properties.” React. Funct. Polym., 71 329–334. https://doi.org/10.1016/j.reactfunctpolym.2010.10.013 (2011)

    Article  CAS  Google Scholar 

  48. Palanivelu, S, Dhanapal, D, Srinivasan, AK, “Studies on Silicon Containing Nano-hybrid Epoxy Coatings for the Protection of Corrosion and Bio-Fouling on Mild Steel.” Silicon, 9 447–458. https://doi.org/10.1007/s12633-014-9202-6 (2017)

    Article  CAS  Google Scholar 

  49. Saravanan, P, Jayamoorthy, K, Ananda Kumar, S, “Design and Characterization of Non-toxic Nano-hybrid Coatings for Corrosion and Fouling Resistance.” J. Sci. Adv. Mater. Devices, 1 367–378. https://doi.org/10.1016/j.jsamd.2016.07.001 (2016)

    Article  Google Scholar 

  50. Manjumeena, R, Venkatesan, R, Duraibabu, D, Sudha, J, Rajendran, N, Kalaichelvan, PT, “Green Nanosilver as Reinforcing Eco-Friendly Additive to Epoxy Coating for Augmented Anticorrosive and Antimicrobial Behavior.” Silicon, 8 277–298. https://doi.org/10.1007/s12633-015-9327-2 (2016)

    Article  CAS  Google Scholar 

  51. Espitia, PJP, de Soares, NFF, dos Coimbra, JSR, de Andrade, NJ, Cruz, RS, Medeiros, EAA, “Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications.” Food Bioprocess Technol., 5 1447–1464. https://doi.org/10.1007/s11947-012-0797-6 (2012)

    Article  CAS  Google Scholar 

  52. Khan, S, Kim, J, Sotto, A, Van der Bruggen, B, “Humic Acid Fouling in a Submerged Photocatalytic Membrane Reactor with Binary TiO2–ZrO2 Particles.” J. Ind. Eng. Chem., 21 779–786. https://doi.org/10.1016/j.jiec.2014.04.012 (2015)

    Article  CAS  Google Scholar 

  53. Kim, K-J, Sung, WS, Suh, BK, Moon, S-K, Choi, J-S, Kim, JG, Lee, DG, “Antifungal Activity and Mode of Action of Silver Nano-particles on Candida albicans.” Biometals, 22 235–242. https://doi.org/10.1007/s10534-008-9159-2 (2009)

    Article  CAS  Google Scholar 

  54. Rashvand, M, Ranjbar, Z, Rastegar, S, “Preserving Anti-corrosion Properties of Epoxy Based Coatings Simultaneously Exposed to Humidity and UV-Radiation Using Nano Zinc Oxide.” J. Electrochem. Soc., 159 C129. https://doi.org/10.1149/2.093203jes (2012)

    Article  CAS  Google Scholar 

  55. EBSCOhost |124919433|, A Comparative Study on Long Term Stability of Self-healing Epoxy Coating with Different Inorganic Nanotubes as Healing Agent Reservoirs (n.d.). https://web.b.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=1788618X&AN=124919433&h=S6KVEfrz7hlGTs3yrJamxV%2bkoPSk2khNzyIZAYkmoqQnp8vbXFoNmTLbfEsx4ofmjpJRWUzq3DPnedz4GEXAkA%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d1788618X%26AN%3d124919433. Accessed July 4, 2020

  56. Ghazizadeh, A, Haddadi, SA, Mahdavian, M, “The Effect of Sol–Gel Surface Modified Silver Nanoparticles on the Protective Properties of the Epoxy Coating.” RSC Adv., 6 18996–19006. https://doi.org/10.1039/C5RA27729A (2016)

    Article  CAS  Google Scholar 

  57. Wang, M-H, Li, Q, Li, X, Liu, Y, Fan, L-Z, “Effect of Oxygen-Containing Functional Groups in Epoxy/Reduced Graphene Oxide Composite Coatings on Corrosion Protection and Antimicrobial Properties.” Appl. Surf. Sci., 448 351–361. https://doi.org/10.1016/j.apsusc.2018.04.141 (2018)

    Article  CAS  Google Scholar 

  58. Luo, X, Zhong, J, Zhou, Q, Du, S, Yuan, S, Liu, Y, “Cationic Reduced Graphene Oxide as Self-aligned Nanofiller in the Epoxy Nanocomposite Coating with Excellent Anticorrosive Performance and Its High Antibacterial Activity.” ACS Appl. Mater. Interfaces, 10 18400–18415. https://doi.org/10.1021/acsami.8b01982 (2018)

    Article  CAS  Google Scholar 

  59. Haghdadeh, P, Ghaffari, M, Ramezanzadeh, B, Bahlakeh, G, Saeb, MR, “Polyurethane Coatings Reinforced with 3-(Triethoxysilyl)Propyl Isocyanate Functionalized Graphene Oxide Nanosheets: Mechanical and Anti-corrosion Properties.” Prog. Org. Coat., 136 105243. https://doi.org/10.1016/j.porgcoat.2019.105243 (2019)

    Article  CAS  Google Scholar 

  60. Sun, W, Wang, L, Wu, T, Dong, C, Liu, G, “Tuning the Functionalization Degree of Graphene: Determining Critical Conditions for Inhibiting the Corrosion Promotion Activity of Graphene/Epoxy Nanocomposite Coatings.” Mater. Lett., 240 262–266. https://doi.org/10.1016/j.matlet.2019.01.009 (2019)

    Article  CAS  Google Scholar 

  61. Ramasamy, T, Tran, TH, Choi, JY, Cho, HJ, Kim, JH, Yong, CS, Choi, H-G, Kim, JO, “Layer-by-Layer Coated Lipid–Polymer Hybrid Nanoparticles Designed for Use in Anticancer Drug Delivery.” Carbohydr. Polym., 102 653–661. https://doi.org/10.1016/j.carbpol.2013.11.009 (2014)

    Article  CAS  Google Scholar 

  62. Zhao, X, Jia, N, Cheng, L, Wang, R, Gao, C, “Constructing Antifouling Hybrid Membranes with Hierarchical Hybrid Nanoparticles for Oil-in-Water Emulsion Separation.” ACS Omega, 4 2320–2330. https://doi.org/10.1021/acsomega.8b03408 (2019)

    Article  CAS  Google Scholar 

  63. Barua, S, Chattopadhyay, P, Phukan, MM, Konwar, BK, Islam, J, Karak, N, “Biocompatible Hyperbranched Epoxy/Silver–Reduced Graphene Oxide–Curcumin Nanocomposite as an Advanced Antimicrobial Material.” RSC Adv., 4 47797–47805. https://doi.org/10.1039/C4RA07802K (2014)

    Article  CAS  Google Scholar 

  64. Gogoi, B, Barua, S, Sarmah, JK, Karak, N, “In Situ Synthesis of a Microbial Fouling Resistant, Nanofibrillar Cellulose-Hyperbranched Epoxy Composite for Advanced Coating Applications.” Prog. Org. Coat., 124 224–231. https://doi.org/10.1016/j.porgcoat.2018.04.025 (2018)

    Article  CAS  Google Scholar 

  65. Liu, X, Wang, N, Hou, B, “Multifunctional Ag-Based Ternary Nanocomposite Incorporated Epoxy Coating as Antibacterial, Anticorrosion and Antifouling Agent.” Corros. Eng. Sci. Technol., 56 144–153. https://doi.org/10.1080/1478422X.2020.1826138 (2021)

    Article  CAS  Google Scholar 

  66. Callow, JA, Callow, ME, “Trends in the Development of Environmentally Friendly Fouling-Resistant Marine Coatings.” Nat. Commun., 2 244. https://doi.org/10.1038/ncomms1251 (2011)

    Article  CAS  Google Scholar 

  67. Rath, SK, Chavan, JG, Sasane, S, Jagannath, MP, Samui, AB, Chakraborty, BC, “Two Component Silicone Modified Epoxy Foul Release Coatings: Effect of Modulus, Surface Energy and Surface Restructuring on Pseudobarnacle and Macrofouling Behavior.” Appl. Surf. Sci., 256 2440–2446. https://doi.org/10.1016/j.apsusc.2009.10.084 (2010)

    Article  CAS  Google Scholar 

  68. Rath, SK, Chavan, JG, Sasane, S, Srivastava, A, Patri, M, Samui, AB, Chakraborty, BC, Sawant, SN, “Coatings of PDMS-Modified Epoxy via Urethane Linkage: Segmental Correlation Length, Phase Morphology, Thermomechanical and Surface Behavior.” Prog. Org. Coat., 65 366–374. https://doi.org/10.1016/j.porgcoat.2009.02.007 (2009)

    Article  CAS  Google Scholar 

  69. Ananda Kumar, S, Balakrishnan, T, Alagar, M, Denchev, Z, “Development and Characterization of Silicone/Phosphorus Modified Epoxy Materials and Their Application as Anticorrosion and Antifouling Coatings.” Prog. Org. Coat., 55 207–217. https://doi.org/10.1016/j.porgcoat.2005.10.001 (2006)

    Article  CAS  Google Scholar 

  70. Sun, X, Chen, R, Gao, X, Liu, Q, Liu, J, Zhang, H, Yu, J, Liu, P, Takahashi, K, Wang, J, “Fabrication of Epoxy Modified Polysiloxane with Enhanced Mechanical Properties for Marine Antifouling Application.” Eur. Polym. J., 117 77–85. https://doi.org/10.1016/j.eurpolymj.2019.05.002 (2019)

    Article  CAS  Google Scholar 

  71. Chen, Z, Chisholm, B, Kim, J, Stafslien, S, Wagner, R, Patel, S, Daniels, J, Wal, LV, Li, J, Ward, K, Callow, M, Thompson, S, Siripirom, C, “UV-Curable, Oxetane-Toughened Epoxy-Siloxane Coatings for Marine Fouling-Release Coating Applications.” Polym. Int., 57 879–886. https://doi.org/10.1002/pi.2422 (2008)

    Article  CAS  Google Scholar 

  72. Etim, I-IN, Dong, J, Wei, J, Nan, C, Felix Daniel, E, Babu Subedi, D, Xu, D, Prasad Yadav, A, Su, M, Ke, W, “Mitigation of Sulphate-Reducing Bacteria Attack on the Corrosion of 20SiMn Steel Rebar in Sulphoaluminate Concrete Using Organic Silicon Quaternary Ammonium Salt.” Constr. Build. Mater., 257 119047. https://doi.org/10.1016/j.conbuildmat.2020.119047 (2020)

    Article  CAS  Google Scholar 

  73. Verma, S, Das, S, Mohanty, S, Nayak, SK, “Development of Multifunctional Polydimethylsiloxane (PDMS)-Epoxy-Zinc Oxide Nanocomposite Coatings for Marine Applications.” Polym. Adv. Technol., 30 2275–2300. https://doi.org/10.1002/pat.4656 (2019)

    Article  CAS  Google Scholar 

  74. Verma, S, Mohanty, S, Nayak, SK, “Preparation of Hydrophobic Epoxy–Polydimethylsiloxane–Graphene Oxide Nanocomposite Coatings for Antifouling Application.” Soft Matter, 16 1211–1226. https://doi.org/10.1039/C9SM01952A (2020)

    Article  CAS  Google Scholar 

  75. Zhang, Z, Zhao, N, Qi, F, Zhang, B, Liao, B, Ouyang, X, “Reinforced Superhydrophobic Anti-corrosion Epoxy Resin Coating by Fluorine–Silicon–Carbide Composites.” Coatings, 10 1244. https://doi.org/10.3390/coatings10121244 (2020)

    Article  CAS  Google Scholar 

  76. Pistone, A, Scolaro, C, Visco, A, “Mechanical Properties of Protective Coatings Against Marine Fouling: A Review.” Polymers, 13 173. https://doi.org/10.3390/polym13020173 (2021)

    Article  CAS  Google Scholar 

  77. Wang, X-H, Li, J, Zhang, J-Y, Sun, Z-C, Yu, L, Jing, X-B, Wang, F-S, Sun, Z-X, Ye, Z-J, “Polyaniline as Marine Antifouling and Corrosion-Prevention Agent.” Synth. Metals, 102 1377–1380. https://doi.org/10.1016/S0379-6779(98)00384-1 (1999)

    Article  CAS  Google Scholar 

  78. “Oligoaniline-Based Conductive Biomaterials for Tissue Engineering.” ScienceDirect (n.d.). https://www.sciencedirect.com/science/article/pii/S1742706118301739. Accessed July 6, 2020

  79. Ahmadi, Z, Chauhan, NPS, Zarrintaj, P, Khiabani, AB, Saeb, MR, Mozafari, M, “Chapter 13—Experimental Procedures for Assessing Electrical and Thermal Conductivity of Polyaniline.” In: Mozafari, M, Chauhan, NPS (eds.) Fundamentals and Emerging Applications of Polyaniline, pp. 227–258. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-817915-4.00013-0 (2019)

    Chapter  Google Scholar 

  80. Gizdavic-Nikolaidis, MR, Pagnon, JC, Ali, N, Sum, R, Davies, N, Roddam, LF, Ambrose, M, “Functionalized Polyanilines Disrupt Pseudomonas aeruginosa and Staphylococcus aureus Biofilms.” Colloids Surf. B Biointerfaces, 136 666–673. https://doi.org/10.1016/j.colsurfb.2015.10.015 (2015)

    Article  CAS  Google Scholar 

  81. Gizdavic-Nikolaidis, MR, Bennett, JR, Swift, S, Easteal, AJ, Ambrose, M, “Broad Spectrum Antimicrobial Activity of Functionalized Polyanilines.” Acta Biomater., 7 4204–4209. https://doi.org/10.1016/j.actbio.2011.07.018 (2011)

    Article  CAS  Google Scholar 

  82. Baldissera, AF, de Miranda, KL, Bressy, C, Martin, C, Margaillan, A, Ferreira, CA, Baldissera, AF, de Miranda, KL, Bressy, C, Martin, C, Margaillan, A, Ferreira, CA, “Using Conducting Polymers as Active Agents for Marine Antifouling Paints.” Mater. Res., 18 1129–1139. https://doi.org/10.1590/1516-1439.261414 (2015)

    Article  CAS  Google Scholar 

  83. Cai, W, Wang, J, Quan, X, Zhao, S, Wang, Z, “Antifouling and Anticorrosion Properties of One-Pot Synthesized Dedoped Bromo-Substituted Polyaniline and Its Composite Coatings.” Surf. Coat. Technol., 334 7–18. https://doi.org/10.1016/j.surfcoat.2017.10.076 (2018)

    Article  CAS  Google Scholar 

  84. Quan, X, Wang, J, Zhao, S, Cai, W, Wang, Z, Wang, S, Cui, X, “Improved Antibacterial, Antifouling and Corrosion Protective Performance of Epoxy Coatings with Poly(m-Aminophenol).” Prog. Org. Coat., 115 9–17. https://doi.org/10.1016/j.porgcoat.2017.11.005 (2018)

    Article  CAS  Google Scholar 

  85. Quan, X, Wang, J, Souleyman, T, Cai, W, Zhao, S, Wang, Z, “Antibacterial and Antifouling Performance of Bisphenol-A/Poly(ethylene Glycol) Binary Epoxy Coatings Containing Bromine–Benzyl-Disubstituted Polyaniline.” Prog. Org. Coat., 124 61–70. https://doi.org/10.1016/j.porgcoat.2018.08.010 (2018)

    Article  CAS  Google Scholar 

  86. Mostafaei, A, Nasirpouri, F, “Preparation and Characterization of a Novel Conducting Nanocomposite Blended with Epoxy Coating for Antifouling and Antibacterial Applications.” J. Coat. Technol. Res., 10 679–694. https://doi.org/10.1007/s11998-013-9487-1 (2013)

    Article  CAS  Google Scholar 

  87. Fazli-Shokouhi, S, Nasirpouri, F, Khatamian, M, “Polyaniline-Modified Graphene Oxide Nanocomposites in Epoxy Coatings for Enhancing the Anticorrosion and Antifouling Properties.” J. Coat. Technol. Res., 16 983–997. https://doi.org/10.1007/s11998-018-00173-3 (2019)

    Article  CAS  Google Scholar 

  88. Li, D, Li, Y, Feng, Y, Hu, W, Feng, W, “Hierarchical Graphene Oxide/Polyaniline Nanocomposites Prepared by Interfacial Electrochemical Polymerization for Flexible Solid-State Supercapacitors.” J. Mater. Chem. A, 3 2135–2143. https://doi.org/10.1039/C4TA05643D (2015)

    Article  CAS  Google Scholar 

  89. Ye, Z, Zhang, P, Zhang, J, Deng, L, Zhang, J, Lin, C, Guo, R, Dong, A, “Novel Dual-Functional Coating with Underwater Self-healing and Anti-protein-Fouling Properties by Combining Two Kinds of Microcapsules and a Zwitterionic Copolymer.” Prog. Org. Coat., 127 211–221. https://doi.org/10.1016/j.porgcoat.2018.11.021 (2019)

    Article  CAS  Google Scholar 

  90. Zhu, J, Chandrashekhara, K, Flanigan, V, Kapila, S, “Curing and Mechanical Characterization of a Soy-Based Epoxy Resin System.” J. Appl. Polym. Sci., 91 3513–3518. https://doi.org/10.1002/app.13571 (2004)

    Article  CAS  Google Scholar 

  91. Park, S-J, Jin, F-L, Lee, J-R, “Effect of Biodegradable Epoxidized Castor Oil on Physicochemical and Mechanical Properties of Epoxy Resins.” Macromol. Chem. Phys., 205 2048–2054. https://doi.org/10.1002/macp.200400214 (2004)

    Article  CAS  Google Scholar 

  92. Kadam, A, Pawar, M, Yemul, O, Thamke, V, Kodam, K, “Biodegradable Biobased Epoxy Resin from Karanja Oil.” Polymer, 72 82–92. https://doi.org/10.1016/j.polymer.2015.07.002 (2015)

    Article  CAS  Google Scholar 

  93. Stemmelen, M, Pessel, F, Lapinte, V, Caillol, S, Habas, J-P, Robin, J-J, “A Fully Biobased Epoxy Resin from Vegetable Oils: From the Synthesis of the Precursors by Thiol-ene Reaction to the Study of the Final Material.” J. Polym. Sci. Part A Polym. Chem., 49 2434–2444. https://doi.org/10.1002/pola.24674 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Poornima Vijayan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poornima Vijayan, P., Formela, K., Saeb, M.R. et al. Integration of antifouling properties into epoxy coatings: a review. J Coat Technol Res 19, 269–284 (2022). https://doi.org/10.1007/s11998-021-00555-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-021-00555-0

Keywords

Navigation