Skip to main content
Log in

Droplet asymmetry and wetting dynamics on irregularly roughened surfaces

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

This study illustrates pervasive challenges in studying wetting dynamics, including dynamic contact angles, on irregularly roughened surfaces. We demonstrate that asymmetric water droplet shapes occur more than 50% of the time during static and dynamic contact angle measurements on sandblasted Zn-plated stainless steel with a polymeric overcoat. The pinning that causes the asymmetric drop shape distortion on horizontal surfaces also influences the sliding behavior on inclined surfaces. These effects lead to a poor correlation between the measured dynamic contact angles and the observed sliding angles (critical tilt angles). Our work emphasizes that large variations in the values of these dynamic wetting parameters are inherent to the heterogeneity of the surface roughness, and thus they limit the usefulness of standard dynamic wetting criteria. These findings have implications for academic and industrial research focused on making coated materials that have consistent wettability properties throughout their usage life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Roach, P, Shirtcliffe, NJ, Newton, MI, “Progess in superhydrophobic surface development”. Soft Matter4 224–240 (2008)

    Article  CAS  Google Scholar 

  2. Kubiak, KJ, Wilson, MCT, Mathia, TG, Carval, P, “Wettability versus roughness of engineering surfaces”. Wear271 523–528 (2011)

    Article  CAS  Google Scholar 

  3. Shirtcliffe, NJ, McHale, G, Newton, MI, Chabrol, G, Perry, CC, “Dual-scale roughness produces unusually water-repellent surfaces”. Adv. Mater.16 1929–1932 (2004)

    Article  CAS  Google Scholar 

  4. Pham, DC, Na, K, Piao, S, Cho, IJ, Jhang, KY, Yoon, ES, “Wetting behavior and nanotribological properties of silicon nanopatterns combined with diamond-like carbon and perfluoropolyether films”. Nanotechnology22 395303 (2011)

    Article  CAS  Google Scholar 

  5. Boinovich, LB, Emelyanenko, AM, Ivanov, VK, Pashinin, AS, “Durable icephobic coating for stainless steel”. ACS Appl. Mater. Interfaces5 2549–2554 (2013)

    Article  CAS  Google Scholar 

  6. Steele, A, Nayak, BK, Davis, A, Gupta, MC, Loth, E, “Linear abrasion of a titanium superhydrophobic surface prepared by ultrafast laser microtexturing”. J. Micromech. Microeng.23 115012 (2013)

    Article  Google Scholar 

  7. Yang, X, Liu, X, Lu, Y, et al., “Controlling the adhesion of superhydrophobic surfaces using electrolyte jet machining techniques”. Sci. Rep.6 23985 (2016)

    Article  CAS  Google Scholar 

  8. Gao, B, Poduska, KM, “Electrodeposited Zn for water-repellent coatings”. J. Electrochem. Soc.165 D472–D476 (2018)

    Article  CAS  Google Scholar 

  9. Cui, C, Duan, X, Collier, B, Poduska, KM, “Fabrication and wettability analysis of hydrophobic stainless steel surfaces with microscale structures from nanosecond laser machining”. J. Micro Nano-Manuf.6 031006 (2018)

    Article  Google Scholar 

  10. Pan, Y, Shi, K, Duan, X, Naterer, GF, “Experimental investigation of water droplet impact and freezing on micropatterned stainless steel surfaces with varying wettabilities”. Int. J. Heat Mass Transf.129 953–964 (2019)

    Article  CAS  Google Scholar 

  11. Yoshimitsu, Z, Nakajima, A, Watanabe, T, Hashimoto, K, “Effects of surface structure on the hydrophobicity and sliding behavior of water droplets”. Langmuir18 5818–5822 (2002)

    Article  CAS  Google Scholar 

  12. Callies, M, Quere, D, “On water repellency”. Soft Matter1 55 (2005)

    Article  CAS  Google Scholar 

  13. Yuan, Y, Lee, TR, “Contact angle and wetting properties”. Springer Series in Surf. Sci., 51 3–34 (2013)

    Article  CAS  Google Scholar 

  14. Gao, L, McCarthy, TJ, “Wetting 101°”. Langmuir, 25 14105–14115 (2009)

    Article  CAS  Google Scholar 

  15. Hejazi, V, Moghadam, AD, Rohatgi, P, Nosonovsky, M, “Beyond Wenzel and Cassie–Baxter: Second-order effects on the wetting of rough surfaces”. Langmuir, 30 9423–9429 (2014)

    Article  CAS  Google Scholar 

  16. Guo P, Zheng Y, Wen M, Song C, Lin Y, Jiang L, “Icephobic/Anti-Icing Properties of Micro/Nanostructured Surfaces”. Adv. Mater.24 2642–2648 (2012)

    Article  CAS  Google Scholar 

  17. Barthwal, S, Kim, YS, Lim, SH, “Mechanically robust superamphiphobic aluminum surface with nanopore-embedded microtexture”. Langmuir, 29 11966–11974 (2013)

    Article  CAS  Google Scholar 

  18. Barthwal, S, Lim, SH, “Fabrication of long-term stable superoleophobic surface based on copper oxide/cobalt oxide with micro-nanoscale hierarchical roughness”. Appl. Surf. Sci., 328 296–305 (2015)

    Article  CAS  Google Scholar 

  19. Xiang, T, Zhang, M, Li, C, et al., “A facile method for fabrication of superhydrophobic surface with controllable water adhesion and its applications”. J. Alloys Compd.704 170–179 (2017)

    Article  CAS  Google Scholar 

  20. Shi, Z, Zhang, X, “Contact angle hysteresis analysis on superhydrophobic surface based on the design of channel and pillar models”. Mater. Design.131 323–333 (2017)

    Article  Google Scholar 

  21. Ma, M, Hill, RM, “Superhydrophobic surfaces”. Curr. Opin. Colloid Interface Sci.11 193–202 (2006)

    Article  CAS  Google Scholar 

  22. Extrand, CW, Kumagai, Y, “An experimental study of contact angle hysteresis”. J. Colloid Interface Sci.191 378–383 (1997)

    Article  CAS  Google Scholar 

  23. Li, P, Xie, J, Deng, Z, “Characterization of irregularly micro-structured surfaces related to their wetting properties”. Appl. Surf. Sci.335 29–38 (2015)

    Article  CAS  Google Scholar 

  24. Elms, J, “Characterizing dynamic wetting behaviour on irregularly roughened surfaces”. Master’s Thesis, Memorial University of New Foundland, St. John’s, NL (Canada) (2018)

  25. Furmidge, CGL, “Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention”. J. Coll. Sci.17 309–324 (1962)

    Article  CAS  Google Scholar 

  26. Gulec, S, Yadav, S, Das, R, Bhave, V, Tadmor, R, “The influence of gravity on contact angle and circumference of sessile and pendant drops has a crucial historic aspect”. Langmuir, 35 5435–5441 (2019)

    Article  CAS  Google Scholar 

  27. Sakai, M, Song, JH, Yoshida, N, Suzuki, S, Kameshima, Y, Nakajima, A, “Relationship between sliding acceleration of water droplets and dynamic contact angles on hydrophobic surfaces”. Surf. Sci.600 L204–L208 (2006)

    Article  CAS  Google Scholar 

  28. Sakai, M, Hashimoto, A, Yoshida, N, Suzuki, S, Kameshima, Y, Nakajima, A, “Image analysis system for evaluating sliding behavior of a liquid droplet on a hydrophobic surface”. Rev. Sci. Instrum., 78 45103 (2007)

    Article  Google Scholar 

  29. Pierce, E, Carmona, FJ, Amirfazli, A, “Understanding of sliding and contact angle results in tilted plate experiments”. Colloids Surf. A, 323 73–82 (2008)

    Article  CAS  Google Scholar 

  30. Ravi Annapragada, S, Murthy, JY, Garimella, SV, “Prediction of droplet dynamics on an incline”. Int. J. Heat Mass Transf., 55 1466–1474 (2012)

    Article  CAS  Google Scholar 

  31. Gao, N, Geyer, F, Pilat, DW, et al., “How drops start sliding over solid surfaces”. Nat. Phys., 14 191–196 (2018)

    Article  CAS  Google Scholar 

  32. Eral, HB, Mannetje, DJCM, Oh, JM, “Contact angle hysteresis: A review of fundamentals and applications”. Colloid. Polym. Sci.291 247–260 (2013)

    Article  CAS  Google Scholar 

  33. Krasovitski, B, Marmur A, “Drops down the hill: Theoretical study of limiting contact angles and the hysteresis range on a tilted plate”. Langmuir, 21 3881–3885 (2005)

    Article  CAS  Google Scholar 

  34. ElSherbini, AI, Jacobi, AM, “Retention forces and contact angles for critical liquid drops on non-horizontal surfaces”. J. Colloid Interface Sci., 299 841–849 (2006)

    Article  CAS  Google Scholar 

  35. Makkonen, L. A, “Thermodynamic model of contact angle hysteresis”. J. Chem. Phys.147 64703 (2017)

    Article  Google Scholar 

  36. Minghao, R, Chengxia, Y, Yuan, F, et al., “Model for rolling angle”. J. Phys. Chem. C116 8449–8455 (2012)

    Article  Google Scholar 

  37. Xie, J, Xu, J, Shang, W, Zhang, K, “Mode selection between sliding and rolling for droplet on inclined surface: Effect of surface wettability”. Int. J. Heat Mass Transf.122 45–58 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Petroleum Research Newfoundland & Labrador (PRNL) Grant C15-03 for financial support for this research. The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin M. Poduska.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic Supplementary Material

A PDF file contains additional details about gravitational effects on tilted droplets, representative raw data for volume-changed droplets, more data for droplets on tilted surfaces.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, K., Elms, J., Duan, X. et al. Droplet asymmetry and wetting dynamics on irregularly roughened surfaces. J Coat Technol Res 18, 911–919 (2021). https://doi.org/10.1007/s11998-020-00456-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-020-00456-8

Keywords

Navigation