Skip to main content
Log in

Droplet impacting dynamics on wettable, rough and slippery oil-infuse surfaces

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In this study, we investigated droplet impact dynamics offalling water drops (D0 ~ 2.3 mm ) on slippery oil-infused surfaces and compared them to other features of the surfaces, to elucidate the wettability- and roughness-controlled characteristics. We prepared transparent substrates with the designed characteristics, so it would be feasible to visualize the droplet impact dynamics in detail. A wide range of impact kinetics (We ~ 800 (=ρD0Vi2w)) was covered, which gave rise to several types of droplet-impact: gentle spreading, wavy (undulated fingers of spreading edges), droplet break-up, and splashing with small secondary droplets. The basic parameters of the droplet-solid interactions were measured, and events were mapped with respect to the sample surface and impact kinetic conditions. We found that, generally, surface wettability has a major influence on the triple line shape and instability during the impact and retraction process, and thus determines events in of the framework of the dynamic wetting-failure model. Furthermore, while rough conditions promote instability of the impacted droplet, slippery lubricant-infused features tend to dampen perturbations of the spreading/retracting edge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. D. Stow and M. G. Hadfield, An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface, Proc. R. Soc. Lond. A, 373 (1981) 419–441.

    Article  Google Scholar 

  2. R. Rioboo, C. Tropea and M. Marengo, Outcomes from a drop impact on solid surfaces, Atomization Spray, 11 (2001) 155–165.

    Google Scholar 

  3. A. L. Yarin, Drop impact dynamics: Splashing, spreading, receding, bouncing, Annu. Rev. Fluid. Mech., 38 (2006) 159–192.

    Article  MathSciNet  Google Scholar 

  4. T. Tran, H. J. J. Staat, A. Susarrey-Arce, T. C. Foertsch, A. van Houselt, H. J. G. E. Gardeniers, A. Prosperetti, D. Lohse and C. Sun, Droplet impact on superheated micro-structured surfaces, Soft Matter., 9 (12) (2013) 3272–3282.

    Article  Google Scholar 

  5. M. Visaria and I. Mudawar, Theoretical and experimental study of the effects of spray inclination on two-phase spray cooling and critical heat flux, Int. J. Heat Mass Transf., 51 (2008) 2398–2410.

    Article  Google Scholar 

  6. Z. Zhang, P. Jiang, D. M. Christopher and X. Liang, Experimental investigation of spray cooling on micro-, nano- and hybrid- structured surface, Int. J. Heat Mass Transf., 80 (2015) 26–37.

    Article  Google Scholar 

  7. H. Kim, B. Truong, J. Buongiorno and L. W. Hu, On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena, Appl. Phys. Lett., 98 (083121) (2011).

    Google Scholar 

  8. S. H. Kim, H. S. Ahn, J. Kim, M. Kaviany and M. H. Kim, Dynamics of water droplet on a heated nanotubes surface, Appl. Phys. Lett., 102 (233901) (2013).

    Google Scholar 

  9. J. B. Boreyko and C. H. Chen, Self-propelled dropwise condensate on superhydrophobic surfaces, Phys. Rev. Lett., 103 (184501) (2009).

    Google Scholar 

  10. P. Hao, C. Lv and X. Zhang, Freezing of sessile water droplets on surfaces with various roughness and wettability, Appl. Phys. Lett., 104 (161609) (2014).

    Google Scholar 

  11. M. J. Kreder, J. Alvarenga, P. Kim and J. Aizenberg, Design of anti-icing surface: Smooth, textured or slippery?, Nature Reviews Materials, 1 (15003) (2016).

    Google Scholar 

  12. C. Clanet, C. Beguin, D. Richard and D. Quere, Maximal deformation of an impact drop, J. Fluid Mech., 517 (2004) 199–208.

    Article  Google Scholar 

  13. M. Pasandideh-Fard, Y. M. Qiao, S. Chandra and J. Mostaghimi, Capillary effects during droplet impact on a solid surface, Phys. Fluids, 8 (1996) 650–659.

    Article  Google Scholar 

  14. C. Ukiwe and D. Y. Kwok, On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces, Langmuir, 21 (2005) 666–673.

    Article  Google Scholar 

  15. J. B. Lee and S. H. Lee, Dynamic wetting and spreading characteristics of a liquid droplet impinging on hydrophobic textured surfaces, Langmuir, 27 (2011) 6565–6573.

    Article  MathSciNet  Google Scholar 

  16. H. Kim, U. Park, C. Lee, H. Kim, M. H. Kim and J. Kim, Drop splashing on a rough surface: How surface morphology affects splashing threshold, Appl. Phys. Lett., 104 (161608) (2014).

    Google Scholar 

  17. S. T. Thoroddsen and J. Sakakibara, Evolution of the fingering pattern of an impacting drop, Phys. Fluids, 10 (1998) 1359–1374.

    Article  Google Scholar 

  18. H. Y. Kim, Z. C. Feng and J. H. Chun, Instability of a liquid jet emerging from a droplet upon collision with a solid surface, Phys. Fluids, 12 (2000) 531–541.

    Article  Google Scholar 

  19. R. D. Deegan, P. Brunet and J. Eggers, Rayleigh-plateau instability causes the crown splash, Physics (2008) arXiv:0806.3050.

    Google Scholar 

  20. L. V. Zhang, P. Brunet, J. Eggers and R. D. Deegan, Wavelength selection in the crown splash, Phys. Fluids, 22 (122105) (2010).

    Google Scholar 

  21. R. F. Allen, The role of surface tension in splashing, J. Colloid Interface Sci., 51 (1975) 350.

    Article  Google Scholar 

  22. L. Xu, Liquid drop splashing on smooth, rough, and textured surfaces, Phys. Review E, 75 (056316) (2007).

    Google Scholar 

  23. L. Xu, W. W. Zhang and S. R. Nagel, Drop splashing on a dry smooth surface, Phys. Rev. Lett., 94 (184505) (2005).

    Google Scholar 

  24. C. Mundo, M. Sommerfeld and C. Tropea, Droplet-wall collisions; experimental studies of the deformation and breakup process, Int. J. Multiphase Flow, 21 (1995) 151–173.

    Article  Google Scholar 

  25. K. Range and F. Feuillebois, Influence of surface roughness on liquid drop impact, J. Coll. Interf. Sci., 203 (1998) 16–30.

    Article  Google Scholar 

  26. M. Lee, Y. S. Chang and H. Y. Kim, Drop impact on microwetting patterned surfaces, Phys. Fluids, 22 (072101) (2010).

    Google Scholar 

  27. C. Duze, C. Ybert, C. Clanet and L. Bocquet, Making a splash with water repellency, Nature Physics, 3 (2007) 180–183.

    Article  Google Scholar 

  28. A. Latka, A. M. P. Boelens, S. R. Nagel and J. J. de Pablo, Drop splashing is independent of substrate wetting, Phys. Flu. Dyn., 30 (022105) (2018).

    Google Scholar 

  29. M. Cao, D. Guo, C. Yu, K. Li, M. Liu and L. Jiang, Waterrepellent properties of superhydrophobic and lubricant-infused “slippery” surfaces: A brief study on the functions and applications, Appl. Mater. Interface, 8 (2015) 3615–3623.

    Article  Google Scholar 

  30. D. Daniel, M. N. Mankin, R. A. Belisle, T. S. Wong and J. Aizenberg, Lubricant-infused micro/nano-structured surfaces with tunable dynamic omniphobicity at high temperatures, Appl. Phys. Lett., 102 (231603) (2013).

    Google Scholar 

  31. C. Wei, B. Jin, Q. Zhang, X. Zhan and F. Chen, Anti-icing performance of supper-wetting surfaces from icing-resistance to ice-phobic aspects: Robust hydrophobic or slippery surfaces, J. Alloys Comp., 765 (2018) 721–730.

    Article  Google Scholar 

  32. K. Rykaczewski, A. T. Paxson, M. Staymates, M. L. Walker, X. Sun, S. Anand, S. Srinivasan, G. H. McKinley, J. Chinn, J. H. J. Scott and K. K. Varanasi, Dropwise condensation of low surface tension fluids on omniphobic surfaces, Sci. Reports, 4 (4158) (2014) 1–8.

    Google Scholar 

  33. D. J. Preston, Z. Lu, Y. Song, Y. Zhao, K. L. Wilke, D. S. Antao, M. Louis and E. N. Wang, Heat transfer enhancement during water and hydrocarbon condensation on lubricant infused surfaces, Sci. Reports, 8 (540) (2018) 1–8.

    Google Scholar 

  34. X. Dai, N. Sun, S. O. Nielsen, B. B. Stogin, J. Wang, S. Yang and T. S. Wong, Hydrophilic directional slippery rough surfaces for water harvesting, Sci. Advances, 4 (2018) 1–10.

    Article  Google Scholar 

  35. C. Lee, H. Kim and Y. Nam, Drop impact dynamics on oilinfused nanostructured surfaces, Langmuir, 30 (2014) 8400–8407.

    Article  Google Scholar 

  36. J. H. Kim and J. P. Rothstein, Droplet impact dynamics on lubricant-infused superhydrophobic surfaces: The role of viscosity ratio, Langmuir, 32 (2016) 10166–10176.

    Article  Google Scholar 

  37. M. Muschi, B. Brudieu, J. Teisseire and A. Sauret, Drop impact dynamics on slippery liquid-infused porous surfaces: Influence of oil thickness, Soft Matter, 14 (7) (2018) 1100–1107.

    Article  Google Scholar 

  38. H. Jo S. H. Kim, H. S. Park and M. H. Kim, Critical heat flux and nucleate boiling on several heterogeneous wetting surfaces: Controlled hydrophobic patterns on a hydrophilic substrate, Int. J. Multiphase Flow, 62 (2014) 101–109.

    Article  Google Scholar 

  39. M. Liu, Y. Hou, J. Li, L. Tie and Z. Guo, Transparent slippery liquid-infused nanoparticulate coatings, Chem. Eng. J., 337 (2018) 462–470.

    Article  Google Scholar 

  40. Voinov, Hydrodynamics of wetting, Fluid Dynamics, 11 (1976) 714–721.

    Article  Google Scholar 

  41. H. Kim and S. H. Kim, Nonwettable hierarchical structure effect on droplet impact and spreading dynamics, Langmuir, 34 (2018) 5480–5486.

    Article  Google Scholar 

  42. From Wikipedia “Rayleigh-Plateau Instability”, https://en.wikipedia.org/wiki/Plateau-Rayleigh_instability.

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by National Natural Science Foundation of China (NSFC Grant No. 51876203 and No. 51850410519), and supported by the Chinese Academy of Science, President’s International Fellowship Initiative (PIFI Grant No. 2017PE0002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Wang or Yuyan Jiang.

Additional information

Recommended by Editor Yang Na

Kim, SeolHa graduated from POSTECH, (South Korea) for Bachelor (mechanical engineering) to and Doctor degree (nuclear engineering). He worked in Korea Atomic Energy Research Institute and Chinese Academy of Science for researcher. Currently, He is working in Kyungpook National University as an Assistant Professor.

Wang Tao graduated from UCAS (China) for Doctor degree in thermophysics engineering and worked in CAS, IET for post doctor researcher. He had numerous research experience about phase change heat transfer under experimental work. Currently, He is working at the CAS, IET as an Associate Professor.

Jiang Yuyan graduated from Xi’an Jiaotong University for Bachelor, Tsinghua University (China) for Master and Tokyo University (Japan) for Doctor degree in mechanical engineering field. Currently, he is working about various thermal engineering research projects at the CAS, IET as a Full Professor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Wang, T., Zhang, L. et al. Droplet impacting dynamics on wettable, rough and slippery oil-infuse surfaces. J Mech Sci Technol 34, 219–228 (2020). https://doi.org/10.1007/s12206-019-1223-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-019-1223-z

Keywords

Navigation