Skip to main content
Log in

Polyaniline encapsulated α-zirconium phosphate nanosheet for enforcing anticorrosion performance of epoxy coating

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) encapsulated α-zirconium phosphate (α-ZrP) nanocomposites (PANI/α-ZrP) were prepared by in situ oxidative polymerization and used as anticorrosive filler in epoxy coatings. Water absorption test and electrochemical measurements in 3.5 wt.% NaCl solution were conducted to assess the barrier properties and anticorrosion performances of different coating systems. PANI/α-ZrP composite epoxy coating showed remarkably enhanced corrosion resistance comparing to neat epoxy coating because of “maze effect” from α-ZrP and “passivation effect” from PANI. The α-ZrP nanosheets could be completely encapsulated by PANI with appropriate PANI/α-ZrP mass ratio, and the resulting nanocomposite exhibited optimal corrosion protection properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Huang, J, Liu, Y, Yuan, J, Li, H, "Al/Al2O3 Composite Coating Deposited by Flame Spraying for Marine Applications: Alumina Skeleton Enhances Anti-corrosion and Wear Performances." J. Therm. Spray Technol., 23 676–683 (2014)

    Article  CAS  Google Scholar 

  2. Tian, Z, et al. "Recent Progress in the Preparation of Polyaniline Nanostructures and Their Applications in Anticorrosive Coatings." RSC Adv., https://doi.org/10.1039/c4ra03146f (2014)

    Article  Google Scholar 

  3. Tian, W, Meng, F, Liu, L, Li, Y, Wang, F, "The Failure Behaviour of a Commercial Highly Pigmented Epoxy Coating Under Marine Alternating Hydrostatic Pressure." Prog. Org. Coat., https://doi.org/10.1016/j.porgcoat.2015.01.009 (2015)

    Article  Google Scholar 

  4. Selvaraj, R, Selvaraj, M, Iyer, SVK, "Studies on the Evaluation of the Performance of Organic Coatings Used for the Prevention of Corrosion of Steel Rebars in Concrete Structures." Prog. Org. Coat., https://doi.org/10.1016/j.porgcoat.2008.08.005 (2009)

    Article  Google Scholar 

  5. Matsumoto, M, et al. "Corrosion Products Near the Shear Cut Edge of 55 Mass% Al-Zn Alloy Coated Steel Sheets Under Simulated Marine Atmospheric Environment." Zairyo-to-Kankyo, https://doi.org/10.3323/jcorr.59.468 (2011)

    Article  Google Scholar 

  6. Cui, M, et al. "Processable Poly(2-Butylaniline)/Hexagonal Boron Nitride Nanohybrids for Synergetic Anticorrosive Reinforcement of Epoxy Coating." Corros. Sci., 131 187–198 (2018)

    Article  CAS  Google Scholar 

  7. Singh Raman, RK, et al. "Protecting Copper from Electrochemical Degradation by Graphene Coating." Carbon N. Y., https://doi.org/10.1016/j.carbon.2012.04.048 (2012)

    Article  Google Scholar 

  8. Yang, T, et al. "Enhancement of the Corrosion Resistance of Epoxy Coating by Highly Stable 3, 4, 9, 10-Perylene Tetracarboxylic Acid Functionalized Graphene." J. Hazard. Mater., https://doi.org/10.1016/j.jhazmat.2018.06.038 (2018)

    Article  Google Scholar 

  9. Yang, N, Yang, T, Wang, W, Chen, H, Li, W, "Polydopamine Modified Polyaniline-Graphene Oxide Composite for Enhancement of Corrosion Resistance." J. Hazard. Mater., https://doi.org/10.1016/j.jhazmat.2019.05.063 (2019)

    Article  Google Scholar 

  10. Wang, S, et al. "Green Synthesis of Graphene with the Assistance of Modified Lignin and Its Application in Anticorrosive Waterborne Epoxy Coatings." Appl. Surf. Sci., https://doi.org/10.1016/j.apsusc.2019.03.229 (2019)

    Article  Google Scholar 

  11. Cui, M, et al. "Anticorrosive Performance of Waterborne Epoxy Coatings Containing Water-Dispersible Hexagonal Boron Nitride (h-BN) Nanosheets." Appl. Surf. Sci., https://doi.org/10.1016/j.apsusc.2016.11.141 (2017)

    Article  Google Scholar 

  12. Yan, H, et al. "Enhanced Corrosion Resistance and Adhesion of Epoxy Coating by Two-Dimensional Graphite-Like g-C3N4 Nanosheets." J. Colloid Interface Sci., https://doi.org/10.1016/j.jcis.2020.06.027 (2020)

    Article  Google Scholar 

  13. Kumar, CV, Chaudhari, A, Rosenthal, GL, "Enhanced Energy Transfer Between Aromatic Chromophores Bound to Hydrophobically Modified Layered Zirconium Phosphate Suspensions." J. Am. Chem. Soc., https://doi.org/10.1021/ja00080a059 (1994)

    Article  Google Scholar 

  14. Xiang, H, et al. "Flame Retardancy of Polyamide 6 Hybrid Fibers: Combined Effects of α-Zirconium Phosphate and Ammonium Sulfamate." Prog. Nat. Sci. Mater. Int., https://doi.org/10.1016/j.pnsc.2017.04.013 (2017)

    Article  Google Scholar 

  15. Cao, G, Garcia, ME, Alcala, M, Burgess, LF, Mallouk, TE, "Chiral Molecular Recognition in Intercalated Zirconium Phosphate." J. Am. Chem. Soc., https://doi.org/10.1021/ja00045a046 (1992)

    Article  Google Scholar 

  16. Clearfield, A, "Group IV Phosphates as Catalysts and Catalyst Supports." J. Mol. Catal., https://doi.org/10.1016/0304-5102(84)85084-1 (1984)

    Article  Google Scholar 

  17. Li, P, et al. "Highly Effective Anti-corrosion Epoxy Spray Coatings Containing Self-Assembled Clay in Smectic Order." J. Mater. Chem. A, https://doi.org/10.1039/c4ta06221c (2015)

    Article  Google Scholar 

  18. He, P, Wang, J, Lu, F, Ma, Q, Wang, Z, "Synergistic Effect of Polyaniline Grafted Basalt Plates for Enhanced Corrosion Protective Performance of Epoxy Coatings." Prog. Org. Coat., https://doi.org/10.1016/j.porgcoat.2017.05.001 (2017)

    Article  Google Scholar 

  19. Abolghasemi, MM, Parastari, S, Yousefi, V, "Microextraction of Phenolic Compounds Using a Fiber Coated with a Polyaniline-Montmorillonite Nanocomposite." Microchim. Acta, https://doi.org/10.1007/s00604-014-1323-5 (2015)

    Article  Google Scholar 

  20. Ali Syed, J, Lu, H, Tang, S, Meng, X, "Enhanced Corrosion Protective PANI-PAA/PEI Multilayer Composite Coatings for 316SS by Spin Coating Technique." Appl. Surf. Sci., 325 160–169 (2015)

    Article  Google Scholar 

  21. Hung, W-I, et al. "Novel Anticorrosion Coatings Prepared from Polyaniline/Graphene Composites." Carbon N. Y., 50 5044–5051 (2012)

    Article  Google Scholar 

  22. Shi, Z, Atrens, A, "An Innovative Specimen Configuration for the Study of Mg Corrosion." Corros. Sci., https://doi.org/10.1016/j.corsci.2010.09.016 (2011)

    Article  Google Scholar 

  23. Boo, J, et al. "Morphology and Mechanical Behavior of Exfoliated Epoxy/α-Zirconium Phosphate Nanocomposites." Compos. Sci. Technol., 67 262–269 (2007)

    Article  CAS  Google Scholar 

  24. Helen, M, Viswanathan, B, Murthy, SS, "Synthesis and Characterization of Composite Membranes Based on α-Zirconium Phosphate and Silicotungstic Acid." J. Membr. Sci.292 98–105 (2007)

    Article  Google Scholar 

  25. Hajipour, AR, Karimi, H, "Synthesis and Characterization of Hexagonal Zirconium Phosphate Nanoparticles." Mater. Lett., https://doi.org/10.1016/j.matlet.2013.11.049 (2014)

    Article  Google Scholar 

  26. Zhang, SP, Song, HO, "Supramolecular Graphene Oxide-Alkylamine Hybrid Materials: Variation of Dispersibility and Improvement of Thermal Stability." New J. Chem., https://doi.org/10.1039/c2nj40214a (2012)

    Article  Google Scholar 

  27. Zhang, D, Qian, H, Wang, L, Li, X, "Comparison of Barrier Properties for a Superhydrophobic Epoxy Coating Under Different Simulated Corrosion Environments." Corros. Sci., https://doi.org/10.1016/j.corsci.2015.11.023 (2016)

    Article  Google Scholar 

  28. Liu, ZY, Li, XG, Du, CW, Cheng, YF, "Local Additional Potential Model for Effect of Strain Rate on SCC of Pipeline Steel in an Acidic Soil Solution." Corros. Sci., https://doi.org/10.1016/j.corsci.2009.08.019 (2009)

    Article  Google Scholar 

  29. Liu, C, et al. "Effect of Inclusions Modified by Rare Earth Elements (Ce, La) on Localized Marine Corrosion in Q460NH Weathering Steel." Corros. Sci., https://doi.org/10.1016/j.corsci.2017.10.001 (2017)

    Article  Google Scholar 

  30. Liu, ZY, Li, XG, Cheng, YF, "Understand the Occurrence of Pitting Corrosion of Pipeline Carbon Steel Under Cathodic Polarization." Electrochim. Acta, https://doi.org/10.1016/j.electacta.2011.11.051 (2012)

    Article  Google Scholar 

  31. Cui, M, Ren, S, Zhao, H, Xue, Q, Wang, L, "Polydopamine Coated Graphene Oxide for Anticorrosive Reinforcement of Water-Borne Epoxy Coating." Chem. Eng. J., https://doi.org/10.1016/j.cej.2017.10.172 (2018)

    Article  Google Scholar 

  32. Conradi, M, Kocijan, A, Kek-Merl, D, Zorko, M, Verpoest, I, "Mechanical and Anticorrosion Properties of Nanosilica-Filled Epoxy-Resin Composite Coatings." Appl. Surf. Sci., https://doi.org/10.1016/j.apsusc.2013.11.155 (2014)

    Article  Google Scholar 

  33. Liu, X, Xiong, J, Lv, Y, Zuo, Y, "Study on Corrosion Electrochemical Behavior of Several Different Coating Systems by EIS." Prog. Org. Coat., https://doi.org/10.1016/j.porgcoat.2008.08.012 (2009)

    Article  Google Scholar 

  34. Hack, HP, Scully, JR, "Defect Area Determination of Organic Coated Steels in Seawater Using the Breakpoint Frequency Method." J. Electrochem. Soc., https://doi.org/10.1149/1.2085574 (1991)

    Article  Google Scholar 

  35. Chen, C, et al. "Synergistic Effect of Graphene Oxide@Phosphate-Intercalated Hydrotalcite for Improved Anti-Corrosion and Self-Healable Protection of Waterborne Epoxy Coating in Salt Environments." J. Mater. Chem. C, https://doi.org/10.1039/c8tc06487c (2019)

    Article  Google Scholar 

  36. Xia, Y, et al. "Incorporating SiO2 Functionalized g-C3N4 Sheets to Enhance Anticorrosion Performance of Waterborne Epoxy." Prog. Org. Coat., https://doi.org/10.1016/j.porgcoat.2020.105768 (2020)

    Article  Google Scholar 

  37. Ye, Y, et al. "Anti-corrosion Properties of Oligoaniline Modified Silica Hybrid Coatings for Low-Carbon Steel." Synth. Met., https://doi.org/10.1016/j.synthmet.2017.11.015 (2018)

    Article  Google Scholar 

  38. Visser, P, Gonzalez-Garcia, Y, Mol, JMC, Terryn, H, "Mechanism of Passive Layer Formation on AA2024-T3 from Alkaline Lithium Carbonate Solutions in the Presence of Sodium Chloride." J. Electrochem. Soc., https://doi.org/10.1149/2.1011802jes (2018)

    Article  Google Scholar 

  39. Huang, T, et al. "Effect of pH Value on Corrosion Behavior of Q235 Steel in an Artificial Soil." J. Chinese Soc. Corros. Prot., 36 31–38 (2016)

    CAS  Google Scholar 

  40. Pourhashem, S, Vaezi, MR, Rashidi, A, Bagherzadeh, MR, "Exploring Corrosion Protection Properties of Solvent Based Epoxy-Graphene Oxide Nanocomposite Coatings on Mild Steel." Corros. Sci., https://doi.org/10.1016/j.corsci.2016.11.008 (2017)

    Article  Google Scholar 

  41. Situ, Y, Ji, W, Liu, C, Xu, J, Huang, H, "Synergistic Effect of Homogeneously Dispersed PANI-TiN Nanocomposites Towards Long-Term Anticorrosive Performance of Epoxy Coatings." Prog. Org. Coat., https://doi.org/10.1016/j.porgcoat.2019.01.034 (2019)

    Article  Google Scholar 

  42. Ye, Y, et al. "Improvement of Anticorrosion Ability of Epoxy Matrix in Simulate Marine Environment by Filled with Superhydrophobic POSS-GO Nanosheets." J. Hazard. Mater., https://doi.org/10.1016/j.jhazmat.2018.10.040 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51573058) and the Research Fund Program of Guangdong Provincial Key Lab of Green Chemical Product Technology (Grant No. GC201818).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Situ or Hong Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Situ, Y., Guo, Y., Ji, W. et al. Polyaniline encapsulated α-zirconium phosphate nanosheet for enforcing anticorrosion performance of epoxy coating. J Coat Technol Res 18, 999–1012 (2021). https://doi.org/10.1007/s11998-020-00452-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-020-00452-y

Keywords

Navigation