Skip to main content
Log in

Developing a new superhydrophilic and superoleophobic poly(4-(1-vinyl-1H-imidazol-3-ium-3-yl) butane-1-sulfonate): vinyl imidazole@Perfluorooctanoic acid@SiO2 coated stainless steel mesh for highly efficient, stable, and durable oil/water separation

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The design and development of efficient approaches for water–oil separation have had widespread interest. Most previously introduced techniques and materials used for development of the successful separation of oily wastewater could not answer all the desired demands, such as being efficient and environmentally and economically friendly. Therefore, in seeking a novel method capable of answering these expectations, surfaces with special wettability were introduced. A novel, reusable, and recyclable superhydrophilic and superoleophobic poly(Vsim-Vim)@PFOA@SiO2 nanocomposite-coated stainless steel mesh was synthesized through a facile preparation process. Since the most important factors of these coatings are their oleophobicity and hydrophilicity values, the water contact angle (WCA) and the oil contact angle (OCA) were measured. The coating indicated the excellent characteristics in which the results showed that WCA was 0°, while OCA was 142°, which confirmed remarkable superhydrophilicity and superoleophobicity, respectively. It is worth mentioning that the coating owes its surface behavior mainly to the finer size of mesh and formation of silica, which causes the higher roughness and better oleophobicity, reduction of the surface energy of the synthesized poly(Vsim-Vim)@SiO2 nanocomposite by PFOA, the formation of hierarchical micro-nanometer scale roughness structures on the coating surface, and stable adhesion of SiO2 nanoparticles into poly(Vsim-Vim). Eventually, superb oil/water separation efficiency of 95% with high stability was attained. This result implied that the fabricated coating is a suitable candidate for water–oil emulsion separation which can potentially be employed in green industrial applications. Also, we believe this approach provides a potential application in controllable oil/water separation in large volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Koenig, SG, Bee, C, Borovika, A, et al., “A Green Chemistry Continuum for a Robust and Sustainable Active Pharmaceutical Ingredient Supply Chain.” ACS Sustain. Chem. Eng., 7 16937–16951 (2019). https://doi.org/10.1021/acssuschemeng.9b02842

    Article  CAS  Google Scholar 

  2. Wei, Y, Qi, H, Gong, X, Zhao, S, “Specially Wettable Membranes for Oil–Water Separation.” Adv. Mater. Interfaces, 5 1800576–1800603 (2018). https://doi.org/10.1002/admi.201800576

    Article  CAS  Google Scholar 

  3. Lin, X, Hong, J, “Recent Advances in Robust Superwettable Membranes for Oil–Water Separation.” Adv. Mater. Interfaces, 6 1900126–1900149 (2019). https://doi.org/10.1002/admi.201900126

    Article  Google Scholar 

  4. Zhang, Y, Wang, H, Liu, B, et al., “NiCo2O4 Hierarchical Structure Coated Mesh with Long-Term Stable Underwater Superoleophobicity for High-Efficient, High-Flux Oil–Water Separation.” Appl. Surf. Sci., 504 144598–144608 (2019). https://doi.org/10.1016/j.apsusc.2019.144598

    Article  CAS  Google Scholar 

  5. Wang, X, Han, Z, Liu, Y, Wang, Q, “Micro-nano Surface Structure Construction and Hydrophobic Modification to Prepare Efficient Oil–Water Separation Melamine Formaldehyde Foam.” Appl. Surf. Sci., 504 144577–144588 (2019). https://doi.org/10.1016/j.apsusc.2019.144577

    Article  CAS  Google Scholar 

  6. Abdulredha, MM, Siti Aslina, H, Luqman, CA, “Overview on Petroleum Emulsions, Formation, Influence and Demulsification Treatment Techniques.” Arab. J. Chem., 13 3403–3428 (2018). https://doi.org/10.1016/j.arabjc.2018.11.014

    Article  CAS  Google Scholar 

  7. Lv, J, Wang, B, Ma, Q, et al., “Preparation of Superhydrophobic Melamine Sponges Decorated with Polysiloxane Nanotubes by Plasma Enhanced Chemical Vapor Deposition (PECVD) Method for Oil/Water Separation.” Mater. Res. Express, 5 075025 (2018). https://doi.org/10.1088/2053-1591/aad0e1

    Article  CAS  Google Scholar 

  8. Wang, B, Lei, B, Tang, Y, et al., “Facile Fabrication of Robust Superhydrophobic Cotton Fabrics Modified by Polysiloxane Nanowires for Oil/Water Separation.” J. Coat. Technol. Res., 15 611–621 (2018). https://doi.org/10.1007/s11998-017-0002-y

    Article  CAS  Google Scholar 

  9. Gupta, RK, Dunderdale, GJ, England, MW, Hozumi, A, “Oil/Water Separation Techniques: A Review of Recent Progresses and Future Directions.” J. Mater. Chem. A, 5 16025–16058 (2017). https://doi.org/10.1039/C7TA02070H

    Article  CAS  Google Scholar 

  10. Dong, X, Chen, J, Ma, Y, et al., “Superhydrophobic and Superoleophilic Hybrid Foam of Graphene and Carbon Nanotube for Selective Removal of Oils or Organic Solvents from the Surface of Water.” Chem. Commun., 48 10660–10662 (2012). https://doi.org/10.1039/c2cc35844a

    Article  CAS  Google Scholar 

  11. Su, C, Yang, H, Song, S, et al., “A Magnetic Superhydrophilic/Oleophobic Sponge for Continuous Oil–Water Separation.” Chem. Eng. J., 309 366–373 (2017). https://doi.org/10.1016/j.cej.2016.10.082

    Article  CAS  Google Scholar 

  12. Cheryan, M, Rajagopalan, N, “Membrane Processing of Oily Streams. Wastewater Treatment and Waste Reduction.” J. Membr. Sci., 151 13–28 (1998). https://doi.org/10.1016/S0376-7388(98)00190-2

    Article  CAS  Google Scholar 

  13. Ashaghi, KS, Ebrahimi, M, Czermak, P, “Ceramic Ultra- and Nanofiltration Membranes for Oilfield Produced Water Treatment: A Mini Review.” Open Environ. Sci., 1 1–8 (2008). https://doi.org/10.2174/1876325100701010001

    Article  Google Scholar 

  14. Wenzel, RN, “Resistance of Solid Surfaces to Wetting by Water.” Ind. Eng. Chem., 28 988–994 (1936). https://doi.org/10.1021/ie50320a024

    Article  CAS  Google Scholar 

  15. Yousefi, E, Ghadimi, MR, Amirpoor, S, Dolati, A, “Preparation of New Superhydrophobic and Highly Oleophobic Polyurethane Coating with Enhanced Mechanical Durability.” Appl. Surf. Sci., 454 201–209 (2018). https://doi.org/10.1016/j.apsusc.2018.05.125

    Article  CAS  Google Scholar 

  16. Feng, XQ, Gao, X, Wu, Z, et al., “Superior Water Repellency of Water Strider Legs with Hierarchical Structures: Experiments and Analysis.” Langmuir, 23 4892–4896 (2007). https://doi.org/10.1021/la063039b

    Article  CAS  Google Scholar 

  17. Gu, H, Li, G, Li, P, et al., “Superhydrophobic and Breathable SiO2/Polyurethane Porous Membrane for Durable Water Repellent Application and Oil–Water Separation.” Appl. Surf. Sci., 512 144837–144849 (2020). https://doi.org/10.1016/j.apsusc.2019.144837

    Article  CAS  Google Scholar 

  18. Reza Ghadimi, M, Azad, M, Amirpoor, S, et al., “Design and Fabrication of a Highly Efficient, Stable and Durable New Wettability Coated Stainless Steel Mesh for Oil/Water Separation.” Mater. Lett., 256 126627–126631 (2019). https://doi.org/10.1016/J.MATLET.2019.126627

    Article  Google Scholar 

  19. Chu, Z, Feng, Y, Seeger, S, “Oil/Water Separation with Selective Superantiwetting/Superwetting Surface Materials.” Angew. Chem. Int. Ed., 54 2328–2338 (2015). https://doi.org/10.1002/anie.201405785

    Article  CAS  Google Scholar 

  20. Feng, L, Zhang, Z, Mai, Z, et al., “A Super-hydrophobic and Super-oleophilic Coating Mesh Film for the Separation of Oil and Water.” Angew. Chem. Int. Ed., 43 2012–2014 (2004). https://doi.org/10.1002/anie.200353381

    Article  CAS  Google Scholar 

  21. Reynolds, JG, Coronado, PR, Hrubesh, LW, “Hydrophobic Aerogels for Oil-Spill Clean Up—Synthesis and Characterization.” J. Non-Cryst. Solids, 292 127–137 (2001). https://doi.org/10.1016/S0022-3093(01)00882-1

    Article  CAS  Google Scholar 

  22. Inagaki, M, Kawahara, A, Nishi, Y, Iwashita, N, “Heavy Oil Sorption and Recovery by Using Carbon Fiber Felts.” Carbon N. Y., 40 1487–1492 (2002). https://doi.org/10.1016/S0008-6223(01)00319-0

    Article  CAS  Google Scholar 

  23. Matin, A, Baig, U, Gondal, MA, et al., “Facile Fabrication of Superhydrophobic/Superoleophilic Microporous Membranes by Spray-Coating Ytterbium Oxide Particles for Efficient Oil–Water Separation.” J. Membr. Sci., 548 390–397 (2018). https://doi.org/10.1016/j.memsci.2017.11.045

    Article  CAS  Google Scholar 

  24. Goetz, LA, Jalvo, B, Rosal, R, Mathew, AP, “Superhydrophilic Anti-fouling Electrospun Cellulose Acetate Membranes Coated with Chitin Nanocrystals for Water Filtration.” J. Membr. Sci., 510 238–248 (2016). https://doi.org/10.1016/j.memsci.2016.02.069

    Article  CAS  Google Scholar 

  25. Zhou, S, Xiong, Z, Liu, F, et al., “Novel Janus Membrane with Unprecedented Osmosis Transport Performance.” J. Mater. Chem. A, 7 632–638 (2019). https://doi.org/10.1039/c8ta08541b

    Article  CAS  Google Scholar 

  26. Ge, J, Zhang, J, Wang, F, et al., “Superhydrophilic and Underwater Superoleophobic Nanofibrous Membrane with Hierarchical Structured Skin for Effective Oil-In-Water Emulsion Separation.” J. Mater. Chem. A, 5 497–502 (2017). https://doi.org/10.1039/c6ta07652a

    Article  CAS  Google Scholar 

  27. Pan, S, Kota, AK, Mabry, JM, Tuteja, A, “Superomniphobic Surfaces for Effective Chemical Shielding.” J. Am. Chem. Soc., 135 578–581 (2013). https://doi.org/10.1021/ja310517s

    Article  CAS  Google Scholar 

  28. Liu, T, Kim, CJ, “Turning a Surface Superrepellent Even to Completely Wetting Liquids.” Science, 346 1096–1100 (2014). https://doi.org/10.1126/science.1254787

    Article  CAS  Google Scholar 

  29. Deng, X, Butt, HJ, Vollmer, D, “Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating.” Science, 335 67–70 (2012). https://doi.org/10.1126/science.1207115

    Article  CAS  Google Scholar 

  30. Siavash Moakhar, R, AbdelFatah, T, Sanati, A, et al., “A Nanostructured Gold/Graphene Microfluidic Device for Direct and Plasmonic-Assisted Impedimetric Detection of Bacteria.” ACS Appl. Mater. Interfaces, (2020). https://doi.org/10.1021/acsami.0c02654

    Article  Google Scholar 

  31. Siavash Moakhar, R, Jalali, M, Kushwaha, A, et al., “AuPd Bimetallic Nanoparticle Decorated TiO2 Rutile Nanorod Arrays for Enhanced Photoelectrochemical Water Splitting.” J. Appl. Electrochem., (2018). https://doi.org/10.1007/s10800-018-1231-1

    Article  Google Scholar 

  32. Ghartavol, HM, Moakhar, RS, Dolati, A, “Electrochemical Investigation of Electrodeposited Platinum Nanoparticles on Multi Walled Carbon Nanotubes for Methanol Electro-oxidation.” J. Chem. Sci., 129 1399–1410 (2017). https://doi.org/10.1007/s12039-017-1346-7

    Article  CAS  Google Scholar 

  33. Moakhar, RS, Hariri, MB, Kushwaha, A, et al., “Au–Pd Bimetallic Nanoparticle Electrodes for Direct Electroreduction of Hexavalent Chromium Complexes.” Aust. J. Chem., 69 423–430 (2016). https://doi.org/10.1071/CH15660

    Article  CAS  Google Scholar 

  34. Siavash Moakhar, R, Goh, GKL, Dolati, A, Ghorbani, M, “Sunlight-Driven Photoelectrochemical Sensor for Direct Determination of Hexavalent Chromium Based on Au Decorated Rutile TiO2 Nanorods.” Appl. Catal. B Environ., 201 411–418 (2017). https://doi.org/10.1016/j.apcatb.2016.08.026

    Article  CAS  Google Scholar 

  35. Siavash Moakhar, R, Gholipour, S, Masudy-Panah, S, et al., “Recent Advances in Plasmonic Perovskite Solar Cells.” Adv. Sci., 7 1902448 (2020). https://doi.org/10.1002/advs.201902448

    Article  CAS  Google Scholar 

  36. Bakhtiargonbadi, F, Esfahani, H, Moakhar, RS, Dabir, F, “Fabrication of Novel Electrospun Al and Cu Doped ZnO Thin Films and Evaluation of Photoelectrical and Sunlight-Driven Photoelectrochemical Properties.” Mater. Chem. Phys., 252 123270 (2020). https://doi.org/10.1016/j.matchemphys.2020.123270

    Article  CAS  Google Scholar 

  37. Hosseini, HSM, Siavash Moakhar, R, Soleimani, F, et al., “One-Pot Microwave Synthesis of Hierarchical C-doped CuO Dandelions/g-C3N4 Nanocomposite with Enhanced Photostability for Photoelectrochemical Water Splitting.” Appl. Surf. Sci., 530 147271 (2020). https://doi.org/10.1016/j.apsusc.2020.147271

    Article  CAS  Google Scholar 

  38. Liu, J, Siavash Moakhar, R, Sudalaiyadum Perumal, A, et al., “An AgNP-Deposited Commercial Electrochemistry Test Strip as a Platform for Urea Detection.” Sci. Rep., 10 1–11 (2020). https://doi.org/10.1038/s41598-020-66422-x

    Article  CAS  Google Scholar 

  39. Lee, YC, Wang, PY, Lo, SL, Huang, CP, “Recovery of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) from Dilute Water Solution by Foam Flotation.” Sep. Purif. Technol., 173 280–285 (2017). https://doi.org/10.1016/j.seppur.2016.09.012

    Article  CAS  Google Scholar 

  40. Suja, F, Pramanik, BK, Zain, SM, “Contamination, Bioaccumulation and Toxic Effects of Perfluorinated Chemicals (PFCs) in the Water Environment: A Review Paper.” Water Sci. Technol., 60 1533–1554 (2009). https://doi.org/10.2166/wst.2009.504

    Article  CAS  Google Scholar 

  41. Yamashita, N, Taniyasu, S, Petrick, G, et al., “Perfluorinated Acids as Novel Chemical Tracers of Global Circulation of Ocean Waters.” Chemosphere, 70 1247–1255 (2008). https://doi.org/10.1016/j.chemosphere.2007.07.079

    Article  CAS  Google Scholar 

  42. Lv, J, Cheng, Z, Wu, H, et al., “In-situ Polymerization and Covalent Modification on Aramid Fiber Surface via Direct Fluorination for Interfacial Enhancement.” Compos. Part B Eng., 182 107608 (2020). https://doi.org/10.1016/j.compositesb.2019.107608

    Article  CAS  Google Scholar 

  43. Cheng, Z, Wu, P, Li, B, et al., “Surface Chain Cleavage Behavior of PBIA Fiber Induced by Direct Fluorination.” Appl. Surf. Sci., 384 480–486 (2016). https://doi.org/10.1016/j.apsusc.2016.05.055

    Article  CAS  Google Scholar 

  44. Amirpoor, S, Siavash Moakhar, R, Dolati, A, “A Novel Superhydrophilic/Superoleophobic Nanocomposite PDMS-NH2/PFONa-SiO2 Coated-Mesh for the Highly Efficient and Durable Separation of Oil and Water.” Surf. Coat. Technol., 394 125859 (2020). https://doi.org/10.1016/j.surfcoat.2020.125859

    Article  CAS  Google Scholar 

  45. Facio, DS, Mosquera, MJ, “Simple Strategy for Producing Superhydrophobic Nanocomposite Coatings In Situ on a Building Substrate.” ACS Appl. Mater. Interfaces, 5 7517–7526 (2013). https://doi.org/10.1021/am401826g

    Article  CAS  Google Scholar 

  46. Yang, J, Yin, L, Tang, H, et al., “Polyelectrolyte-Fluorosurfactant Complex-Based Meshes with Superhydrophilicity and Superoleophobicity for Oil/Water Separation.” Chem. Eng. J., 268 245–250 (2015). https://doi.org/10.1016/j.cej.2015.01.073

    Article  CAS  Google Scholar 

  47. Steele, A, Bayer, I, Loth, E, “Inherently Superoleophobic Nanocomposite Coatings by Spray Atomization.” Nano Lett., 9 501–505 (2009). https://doi.org/10.1021/nl8037272

    Article  CAS  Google Scholar 

  48. Motlagh, NV, Birjandi, FC, Sargolzaei, J, Shahtahmassebi, N, “Durable, Superhydrophobic, Superoleophobic and Corrosion Resistant Coating on the Stainless Steel Surface Using a Scalable Method.” Appl. Surf. Sci., 283 636–647 (2013). https://doi.org/10.1016/j.apsusc.2013.06.160

    Article  CAS  Google Scholar 

  49. Ülkü, S, Balköse, D, Baltacboğlu, H, “Effect of Preparation pH on Pore Structure of Silica Gels.” Colloids Polym. Sci., 271 709–713 (1993). https://doi.org/10.1007/BF00652834

    Article  Google Scholar 

  50. Zisman, WA, “Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution.” UTC, pp 1–51 (1964)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolghasem Dolati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3599 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadimi, M.R., Siavash Moakhar, R., Amirpoor, S. et al. Developing a new superhydrophilic and superoleophobic poly(4-(1-vinyl-1H-imidazol-3-ium-3-yl) butane-1-sulfonate): vinyl imidazole@Perfluorooctanoic acid@SiO2 coated stainless steel mesh for highly efficient, stable, and durable oil/water separation. J Coat Technol Res 18, 511–521 (2021). https://doi.org/10.1007/s11998-020-00420-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-020-00420-6

Keywords

Navigation