Skip to main content
Log in

Hydrophilic nano-SiO2/PVA-based coating with durable antifogging properties

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Hydrophilic SiO2/poly(vinyl alcohol) (PVA) coating prepared by solution blended method showed high light transmittance and durable antifogging performance. The effects of SiO2 content and pH value of SiO2 suspension on the morphology and properties of hydrophilic coating were studied by Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy, contact angle test, ultraviolet visible light spectrophotometer, and antifogging test. Results showed that the PVA had good compatibility with nano-SiO2 because of the formation of Si–O–C chemical bond at the interface between nano-SiO2 and PVA. When prepared at pH = 7, SiO2/PVA coatings (SiO2/PVA mass ratio of 0.8) were hydrophilic, with a water contact angle of 22.9°, and exhibited papilla-like surface features (RMS = 7.6 nm). Polyethylene (PE) samples coated with this SiO2/PVA film exhibited a light transmittance of up to 90%, between 560 and 700 nm, and remained fog-free for more than 1 month after exposure to water at 60°C (QB/T 4475-2013 standard). Water-resisting and wear-resisting tests revealed that antifogging coatings demonstrated excellent mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sun, Z, Liao, T, Liu, K, et al., “Fly-Eye Inspired Superhydrophobic Anti-Fogging Inorganic Nanostructures.” Small, 10 (15) 3001–3006 (2014)

    Article  CAS  Google Scholar 

  2. Nuraje, N, Asmatulu, R, Cohen, RE, et al., “Durable Antifog Films from Layer-by-Layer Molecularly Blended Hydrophilic Polysaccharides.” Langmuir, 27 (2) 782–791 (2011)

    Article  CAS  Google Scholar 

  3. Lu, X, Wang, Z, Yang, X, et al., “Antifogging and Antireflective Silica Film and its Application on Solar Modules.” Surf. Coat. Technol., 206 (6) 1490–1494 (2011)

    Article  CAS  Google Scholar 

  4. Hlavay, J, Gullbault, G, “Applications of the Piezoelectric Crystal Detector in Analytical Chemistry.” Anal. Chem., 49 1890–1898 (1977)

    Article  CAS  Google Scholar 

  5. Bessell, JR, Flemming, E, Kunert, W, et al., “Maintenance of Clear Vision During Laparoscopic Surgery.” Minim. Invasive Ther. Allied Technol., 5 (5) 450–455 (1996)

    Article  Google Scholar 

  6. Cemek, B, Demir, Y, “Testing of the Condensation Characteristics and Light Transmissions of Different Plastic Film Covering Materials.” Polym. Test., 24 (3) 284–289 (2005)

    Article  CAS  Google Scholar 

  7. Song, K, Park, J, Kang, H, et al., “Synthesis of Hydrophilic Coating Solution for Polymer Substrate Using Glycidoxypropyltrimethoxysilane.” J. Sol-Gel Sci. Technol., 27 (1) 53–59 (2003)

    Article  CAS  Google Scholar 

  8. Fateh, R, Dillert, R, Bahnemann, D, “Preparation and Characterization of Transparent Hydrophilic Photocatalytic TiO2/SiO2 Thin Films on Polycarbonate.” Langmuir, 29 (11) 3730–3739 (2013)

    Article  CAS  Google Scholar 

  9. Wei, H, Liu, K, Chang, Y, et al., “Superior Mechanical Properties of Hybrid Organic-Inorganic Superhydrophilic Thin Film on Plastic Substrate.” Surf. Coat. Technol., 320 377–382 (2017)

    Article  CAS  Google Scholar 

  10. Du, X, Xing, Y, Zhou, M, et al., “Broadband Antireflective Superhydrophilic Antifogging Nano-coatings Based on Three-Layer System.” Microporous Mesoporous Mater., 255 84–93 (2018)

    Article  CAS  Google Scholar 

  11. Park, S, Park, S, Jang, DH, et al., “Anti-fogging Behavior of Water-Absorbing Polymer Films Derived from Isosorbide-Based Epoxy Resin.” Mater. Lett., 180 81–84 (2016)

    Article  CAS  Google Scholar 

  12. Chevallier, P, Turgeon, S, Sarra-Bournet, C, et al., “Characterization of Multilayer Anti-Fog Coatings.” ACS Appl. Mater. Interfaces, 3 (3) 750–758 (2011)

    Article  CAS  Google Scholar 

  13. Cebeci, FÇ, Wu, Z, Zhai, L, et al., “Nanoporosity-Driven Superhydrophilicity: A Means to Create Multifunctional Antifogging Coatings.” Langmuir, 22 (6) 2856–2862 (2006)

    Article  CAS  Google Scholar 

  14. Durán, IR, Laroche, G, “Current Trends, Challenges, and Perspectives of Anti-fogging Technology: Surface and Material Design, Fabrication Strategies, and Beyond.” Prog. Mater. Sci., 99 106–186 (2019)

    Article  Google Scholar 

  15. Feng, C, Gou, T, Li, J, et al., “A Highly Transparent Polymer Coating on the Glass with Broadband Antireflection, Antifogging and Antifouling Properties.” Mater. Res. Express, 6 (70) 75319 (2019)

    Article  CAS  Google Scholar 

  16. Luo, S, Qiao, X, Wang, Q, et al., “Excellent Self-healing and Antifogging Coatings Based on Polyvinyl Alcohol/Hydrolyzed Poly(Styrene-co-maleic Anhydride).” J. Mater. Sci., 54 (7) 5961–5970 (2019)

    Article  CAS  Google Scholar 

  17. Saxena, N, Naik, T, Paria, S, “Organization of SiO2 and TiO2 Nanoparticles into Fractal Patterns on Glass Surface for the Generation of Superhydrophilicity.” J. Phys. Chem. C, 121 (4) 2428–2436 (2017)

    Article  CAS  Google Scholar 

  18. Chen, J, Zhang, L, Zeng, Z, et al., “Facile Fabrication of Antifogging, Antireflective, and Self-cleaning Transparent Silica Thin Coatings.” Colloids Surf. A Physicochem. Eng. Asp., 509 149–157 (2016)

    Article  CAS  Google Scholar 

  19. Zhao, Z, Zhang, D, Tai, L, et al., “A Facile and Low-Cost Preparation of Durable Amphiphobic Coatings with Fluoride–Silica@Poly(Methacrylic Acid) Hybrid Nanocomposites.” J. Coat. Technol. Res., 14 (6) 1369–1380 (2017)

    Article  CAS  Google Scholar 

  20. Cao, L, Hao, H, Dutta, PK, “Fabrication of High-Performance Antifogging and Antireflective Coatings Using Faujasitic Nanozeolites.” Microporous Mesoporous Mater., 263 62–70 (2018)

    Article  CAS  Google Scholar 

  21. Liu, H, Feng, L, Zhai, J, et al., “Reversible Wettability of a Chemical Vapor Deposition Prepared ZnO Film Between Superhydrophobicity and Superhydrophilicity.” Langmuir, 20 (14) 5659–5661 (2004)

    Article  CAS  Google Scholar 

  22. Yang, F, Wang, P, Yang, X, et al., “Antifogging and Anti-frosting Coatings by Dip-Layer-by-Layer Self-assembly of Just Triple-Layer Oppositely Charged Nanoparticles.” Thin Solid Films, 634 85–95 (2017)

    Article  CAS  Google Scholar 

  23. Miyauchi, M, Shibuya, M, Zhao, Z, et al., “Surface Wetting Behavior of a WO3 Electrode Under Light-Irradiated or Potential-Controlled Conditions.” J. Phys. Chem. C, 113 (24) 10642–10646 (2009)

    Article  CAS  Google Scholar 

  24. Hu, J, Wu, S, Lou, B, “Research on Preparation of Transparent Hydrophilic Antifogging Acrylate Resin.” Mater. Sci. Forum, 704 92–101 (2012)

    Google Scholar 

  25. Liang, T, Li, H, Lai, X, et al., “A Facile Approach to UV-Curable Super-Hydrophilic Polyacrylate Coating Film Grafted On Glass Substrate.” J. Coat. Technol. Res., 13 (6) 1115–1121 (2016)

    Article  CAS  Google Scholar 

  26. Ge, B, Ren, G, Yang, H, et al., “Fabrication of BiOBr-Silicone Aerogel Photocatalyst in an Aqueous System with Degradation Performance by Sol-Gel Method.” Sci. China Technol. Sci., (2019). https://doi.org/10.1007/s11431-019-1499-x

    Article  Google Scholar 

  27. Lee, H, Alcaraz, ML, Rubner, MF, et al., “Zwitter-Wettability and Antifogging Coatings with Frost-Resisting Capabilities.” ACS Nano, 7 (3) 2172–2185 (2013)

    Article  CAS  Google Scholar 

  28. Lee, H, Gilbert, JB, Angilè, FE, et al., “Design and Fabrication of Zwitter-Wettable Nanostructured Films.” ACS Appl. Mater. Interfaces, 7 (1) 1004–1011 (2014)

    Article  CAS  Google Scholar 

  29. Zhang, X, He, J, “Hydrogen-Bonding-Supported Self-Healing Antifogging Thin Films.” Sci. Rep., 5 (1) 9227 (2015)

    Article  CAS  Google Scholar 

  30. Zhao, J, Ma, L, Millians, W, et al., “Dual-Functional Antifogging/Antimicrobial Polymer Coating.” ACS Appl. Mater. Interfaces, 8 (13) 8737–8742 (2016)

    Article  CAS  Google Scholar 

  31. Shibraen, MHMA, Yagoub, H, Zhang, X, et al., “Anti-fogging and Anti-frosting Behaviors of Layer-by-Layer Assembled Cellulose Derivative Thin Film.” Appl. Surf. Sci., 370 1–5 (2016)

    Article  CAS  Google Scholar 

  32. Grube, S, Siegmann, K, Hirayama, M, “A Moisture-Absorbing and Abrasion-Resistant Transparent Coating on Polystyrene.” J. Coat. Technol. Res., 12 (4) 669–680 (2015)

    Article  CAS  Google Scholar 

  33. Pirzada, T, Arvidson, SA, Saquing, CD, et al., “Hybrid Silica-PVA Nanofibers via Sol-Gel Electrospinning.” Langmuir, 28 (13) 5834–5844 (2012)

    Article  CAS  Google Scholar 

  34. Tong, B, Cheng, C, Khan, MI, et al., “Double Cross-Linking PVA-SiO2 Hybrid Membranes for Alkali Recovery.” Sep. Purif. Technol., 174 203–211 (2017)

    Article  CAS  Google Scholar 

  35. Liu, H, Yu, H, Yuan, X, et al., “Amino-Functionalized Mesoporous PVA/SiO2 Hybrids Coated Membrane for Simultaneous Removal of Oils and Water-Soluble Contaminants From Emulsion.” Chem. Eng. J., 374 1394–1402 (2019)

    Article  CAS  Google Scholar 

  36. Haq, AU, Boyd, A, Acheson, J, et al., “Corona Discharge-Induced Functional Surfaces of Polycarbonate and Cyclic Olefins Substrates.” Surf. Coat. Technol., 362 185–190 (2019)

    Article  CAS  Google Scholar 

  37. Topçu Kaya, AS, Cengiz, U, “Fabrication and Application of Superhydrophilic Antifog Surface by Sol-Gel Method.” Prog. Org. Coat., 126 75–82 (2019)

    Article  CAS  Google Scholar 

  38. Ye, L, Zhang, Y, Song, C, et al., “A Simple Sol-Gel Method to Prepare Superhydrophilic Silica Coatings.” Mater. Lett., 188 316–318 (2017)

    Article  CAS  Google Scholar 

  39. QB/T 4475-2013. “Long Term Anti-Drip Polyethylene Greenhouse Film with Coating.” S, 41602-2013

  40. Liao, W, Teng, H, Qu, J, et al., “Fabrication of Chemically Bonded Polyacrylate/Silica Hybrid Films with High Silicon Contents by the Sol–Gel Method.” Prog. Org. Coat., 71 (4) 376–383 (2011)

    Article  CAS  Google Scholar 

  41. Venckatesh, R, Balachandaran, K, Sivaraj, R, “Synthesis and Characterization of Nano TiO2-SiO2: PVA Composite—A Novel Route.” Int. Nano Lett., 2 (1) 1–5 (2012)

    Article  Google Scholar 

  42. Xu, Y, Li, Z, Fan, W, et al., “Density Fluctuation in Silica-PVA Hybrid Gels Determined by Small-Angle X-ray Scattering.” Appl. Surf. Sci., 225 (1) 116–123 (2004)

    Article  CAS  Google Scholar 

  43. Iván, R, Gaétan, L, “Water Drop-Surface Interactions as the Basis for the Design of Anti-fogging Surfaces-Theory, Practice, and Applications Trends.” Adv. Colloid Interface Sci., 263 68–94 (2019)

    Article  CAS  Google Scholar 

  44. Si, Y, Dong, Z, Jiang, L, “Bioinspired Designs of Superhydrophobic and Superhydrophilic Materials.” ACS Cent. Sci., 4 (9) 1102–1112 (2018)

    Article  CAS  Google Scholar 

  45. Wenzel, RN, “Resistance of Solid Surfaces to Wetting by Water.” Ind. Eng. Chem., 28 (8) 988–994 (1936)

    Article  CAS  Google Scholar 

  46. Cassie, A, Baxter, S, “Wettability of Porous Surfaces.” Trans. Faraday Soc., 40 546–551 (1944)

    Article  CAS  Google Scholar 

  47. Liao, W, Huang, X, Ye, L, et al., “Synthesis of Composite Latexes of Polyhedral Oligomericsilsesquioxane and Fluorine Containing Poly(styrene-acrylate) by Emulsion Copolymerization.” J. Appl. Polym. Sci., 133 (21) 933 (2016)

    Article  CAS  Google Scholar 

  48. Feng, C, Zhang, Z, Li, J, et al., “A Bioinspired, Highly Transparent Surface with Dry-Style Antifogging, Antifrosting, Antifouling, and Moisture Self-Cleaning Properties.” Macromol. Rapid Commun., 40 (6) 1800708 (2019)

    Article  CAS  Google Scholar 

  49. Kalapat, N, Amornsakchai, T, “Surface Modification of Biaxially Oriented Polypropylene (BOPP) Film Using Acrylic Acid-Corona Treatment: Part I. Properties and Characterization of Treated Films.” Surf. Coat. Technol., 207 594–601 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Shandong Province (Grant Numbers ZR2019MB053; ZR2017MEM001; and R2019MEE018)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouyong Teng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting Information 1

3DAFM image of PE film surface with nano-SiO2/PVA hydrophilic coatings. (a) PVA, (b) (N2010-PVA)0.4, (c) (N2010-PVA)0.8, (d) (N2010-PVA)2, (e) Ludox N2010, (f) (SS3010-PVA)0.8, respectively (TIFF 240 kb)

Supporting Information 2

The special nanostructure on the surface of PE film (TIFF 223 kb)

Supporting Information 3

The water-resisting test of SiO2/PVA hydrophilic coating on the surface of PE film (TIFF 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, G., Yang, Y., Lei, Y. et al. Hydrophilic nano-SiO2/PVA-based coating with durable antifogging properties. J Coat Technol Res 17, 1145–1155 (2020). https://doi.org/10.1007/s11998-020-00338-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-020-00338-z

Keywords

Navigation