Skip to main content

Advertisement

Log in

Polyelectrolytes fabrication on magnesium alloy surface by layer-by-layer assembly technique with antiplatelet adhesion and antibacterial activities

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Magnesium alloy (MgA) was widely used in biomedical field owing to its good biocompatibility and degradability. The surface of MgA was usually modified to improve its corrosion resistance, biocompatibility, and biological properties. Herein, we employed a layer-by-layer assembly technique to assemble both polyanionic and polycationic electrolytes onto the microarc oxidation-treated MgA surface to yield MgA-MgO-PEI-[Ge(HANPs)/Lzm]50, where the gelatin-conjugated hydroxyapatite nanoparticles [Ge(HANPs)] are the polyanionic electrolyte, lysozyme (Lzm) is the polycationic electrolyte, and polyethyleneimine (PEI) is the transition layer. The morphology and chemical composition of MgA-MgO-PEI-[Ge(HANPs)/Lzm]50 were characterized by X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy, indicating that [Ge(HANPs)/Lzm]50 were successfully fabricated on the surface of MgA-MgO. The surface of MgA-MgO-PEI-[Ge(HANPs)/Lzm]50 exhibited good hydrophilicity as evidenced by the low water contact angle of 24.5°. Excellent corrosion resistance of MgA-MgO-PEI-[Ge(HANPs)/Lzm]50 was obtained since it can decrease about four orders of magnitude of corrosive current (Icorr) compared to pristine MgA. The biological assay for MgA-MgO-PEI-[Ge(HANPs)/Lzm]50 showed good antiplatelet adhesion and excellent antibacterial activities against both E. coli and S. aureus.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Staiger, MP, Pietak, AM, Huadmai, J, Dias, G, “Magnesium and its Alloys as Orthopedic Biomaterials: A Review.” Biomaterials, 27 1728–1734 (2006)

    Article  CAS  Google Scholar 

  2. Chen, YJ, Xu, ZG, Smith, C, Sankar, J, “Recent Advances on the Development of Magnesium Alloys for Biodegradable Implants.” Acta Biomater., 10 45–61 (2014)

    Google Scholar 

  3. Zhao, DW, Witte, F, Lu, FQ, Wang, JL, Li, JL, Qin, L, “Current Status on Clinical Applications of Magnesium-Based Orthopaedic Implants: A Review from Clinical Translational Perspective.” Biomaterials, 112 287–302 (2017)

    Article  CAS  Google Scholar 

  4. Witte, F, Hort, N, Vogt, C, Cohen, S, Kainer, KU, Willumeit, R, Feyerabend, F, “Degradable Biomaterials Based on Magnesium Corrosion.” Curr. Opin. Solid State Mater. Sci., 12 63–72 (2008)

    Article  CAS  Google Scholar 

  5. Li, Y, Cai, S, Shen, SB, Xu, GH, Zhang, FY, Wang, FW, “Self-Healing Hybrid Coating of Phytic Acid/Silane for Improving the Corrosion Resistance of Magnesium Alloy.” J. Coat. Technol. Res., 15 (3) 571–581 (2018)

    Article  CAS  Google Scholar 

  6. Jamesh, M, Kumar, S, Sankara Narayanan, TSN, “Electrodeposition of Hydroxyapatite Coating on Magnesium for Biomedical Applications.” J. Coat. Technol. Res., 9 (4) 495–502 (2012)

    Article  CAS  Google Scholar 

  7. Chen, S, Zhang, J, Chen, YQ, Zhao, S, Chen, MY, Li, X, Maitz, MF, Wang, J, Huang, N, “Application of Phenol/Amine Copolymerized Film Modified Magnesium Alloys: Anticorrosion and Surface Biofunctionalization.” ACS Appl. Mater. Interfaces, 7 24510–24522 (2015)

    Article  CAS  Google Scholar 

  8. Zhang, M, Cai, S, Zhang, FY, Xu, GH, Wang, FW, Yu, N, Wu, XD, “Preparation and Corrosion Resistance of Magnesium Phytic Acid/Hydroxyapatite Composite Coatings on Biodegradable AZ31 Magnesium Alloy.” J Mater Sci: Mater Med., 28 (6) 1–9 (2017)

    Google Scholar 

  9. Uma Rani, R, Shalini, VM, Thota, HK, Sharma, AK, “Comparison of Corrosion Performance of Various Conversion Coatings on Magnesium Alloy Using Electrochemical Techniques.” J. Coat. Technol. Res., 10 (5) 707–715 (2013)

    Article  CAS  Google Scholar 

  10. Zhong, YX, Hu, J, Zhang, YF, Tang, SW, “The One-Step Electroposition of Superhydrophobic Surface on AZ31 Magnesium Alloy and its Time-Dependence Corrosion Resistance in NaCl Solution.” Appl. Surf. Sci., 427 1193–1201 (2018)

    Article  CAS  Google Scholar 

  11. Shi, P, Niu, B, Shanshan, E, Chen, Y, Li, Q, “Preparation and Characterization of PLA Coating and PLA/MAO Composite Coatings on AZ31 Magnesium Alloy for Improvement of Corrosion Resistance.” Surf. Coat. Technol., 262 26–32 (2015)

    Article  CAS  Google Scholar 

  12. Zhou, B, Li, Y, Deng, HB, Hu, Y, Li, B, “Antibacterial Multilayer Films Fabricated by Layer-by-Layer Immobilizing Lysozyme and Gold Nanoparticles on Nanofibers.” Colloid. Surface. B, 116 432–438 (2014)

    Article  CAS  Google Scholar 

  13. Richardson, JJ, Cui, JW, Björnmalm, M, Braunger, JA, Hirotaka, E, Caruso, F, “Innovation in Layer-by-Layer Assembly.” Chem. Rev., 116 14828–14867 (2016)

    Article  CAS  Google Scholar 

  14. Fujita, S, Shiratori, S, “Waterproof Anti Reflection Films Fabricated by Layer-by-Layer Adsorption Process.” Jpn. J. Appl. Phys., 43 2346–2351 (2004)

    Article  CAS  Google Scholar 

  15. Kim, JH, Kim, SH, Shiratori, S, “Fabrication of Nanoporous and Hetero Structure Thin Film via a Layer-by-Layer Self Assembly Method for a Gas Sensor.” Sens. Actuators. B, 102 241–247 (2004)

    Article  CAS  Google Scholar 

  16. Decher, G, “Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites.” Science, 277 1232–1237 (1997)

    Article  CAS  Google Scholar 

  17. Decher, G, Hong, J, Schmitt, J, “Buildup of Ultrathin Multilayer Films by a Self-Assembly Process: III. Consecutively Alternating Adsorption of Anionic and Cationic Polyelectrolytes on Charged Surfaces.” Thin Solid Films, 210–211 831–835 (1992)

    Article  Google Scholar 

  18. Decher, G, Hong, JD, “Buildup of Ultrathin Multilayer Films by a Self-Assembly Process, 1 Consecutive Adsorption of Anionic and Cationic Bipolar Amphiphiles on Charged Surfaces.” Makromol. Chem. Macromol. Symp., 46 321–327 (1991)

    Article  CAS  Google Scholar 

  19. Decher, G, Hong, JD, “Buildup of Ultrathin Multilayer Films by a Self-Assembly Process: II. Consecutive Adsorption of Anionic and Cationic Bipolar Amphiphiles and Polyelectrolytes on Charged Surfaces.” Berich. Bunsen. Gesell., 95 1430–1434 (1991)

    Article  CAS  Google Scholar 

  20. Zhao, YB, Liu, HP, Li, CY, Chen, Y, Li, SQ, Zeng, RC, Wang, ZL, “Corrosion Resistance and Adhesion Strength of a Spin-Assisted Layer-by-Layer Assembled Coating on AZ31 Magnesium Alloy.” Appl. Surf. Sci., 434 787–795 (2018)

    Article  CAS  Google Scholar 

  21. Zhang, XD, Yi, JH, Zhao, GW, Huang, LL, Yan, GJ, Chen, YS, Liu, P, “Layer-by-Layer Assembly of Silver Nanoparticles Embedded Polyelectrolyte Multilayer on Magnesium Alloy with Enhanced Antibacterial Property.” Surf. Coat. Technol., 286 103–112 (2016)

    Article  CAS  Google Scholar 

  22. Bakhsheshi-Rad, HR, Hamzah, E, Ismail, AF, Azizc, M, Kasiri-Asgarani, M, Akbari, E, Jabbarzare, S, Najafinezhad, A, Hadisi, Z, “Synthesis of a Novel Nanostructured Zinc Oxide/Baghdadite Coating on Mg Alloy for Biomedical Application: In-Vitro Degradation Behavior and Antibacterial Activities.” Ceram. Int., 43 14842–14850 (2017)

    Article  CAS  Google Scholar 

  23. Tian, JH, Ding, S, Zhou, CR, Li, LH, Zhang, P, Jiao, YP, Li, H, “A Study on Degradation about Biomimetic Mineralized AZ91 Magnesium Alloy and its Antibacterial Activity Against S.aureus.” J. Funct. Mater., 44 (5) 640–644 (2013)

    CAS  Google Scholar 

  24. Tian, JH, Shen, S, Zhou, CR, Dang, XL, Jiao, YP, Li, LH, Ding, S, Li, H, “Investigation of the Antibacterial Activity and Biocompatibility of Magnesium Alloy Coated with HA and Antibacterial Peptide.” J Mater Sci: Mater Med., 26 (2) 1–12 (2015)

    Google Scholar 

  25. Kiristi, M, Singh, VV, Esteban-Fernández, DÁB, Uygun, M, Soto, F, Uygun, DA, Wang, J, “Lysozyme-Based Antibacterial Nanomotors.” ACS Nano, 9 (9) 9252–9259 (2015)

    Article  CAS  Google Scholar 

  26. Mine, Y, Ma, F, Lauriau, S, “Antibacterial Peptides Released by Enzymatic Hydrolysis of Hen Egg White Lysozyme.” J. Agric. Food Chem., 52 1088–1094 (2004)

    Article  CAS  Google Scholar 

  27. Visan, A, Cristescu, R, Stefan, N, Miroiu, M, Nita, C, Socol, M, Florica, C, Rasoga, O, Zgura, I, Sima, LE, Chiritoiu, M, Chifiriuc, MC, Holban, AM, Mihailescu, IN, Socol, G, “Antibacterial Polycaprolactone/Polyethylene Glycol Embedded Lysozyme Coatings of Ti Implants for Osteoblast Functional Properties in Tissue Engineering.” Appl. Surf. Sci., 417 234–243 (2017)

    Article  CAS  Google Scholar 

  28. Caro, A, Humblot, V, Méthivier, C, Minier, M, Salmain, M, Pradier, CM, “Grafting of Lysozyme and/or Poly(ethylene glycol) to Prevent Biofilm Growth on Stainless Steel Surfaces.” J. Phys. Chem. B, 113 (7) 2101–2109 (2009)

    Article  CAS  Google Scholar 

  29. Eby, DM, Luckarift, HR, Johnson, GR, “Hybrid Antibacterial Enzyme and Silver Nanoparticle Coatings for Medical Instruments.” ACS Appl. Mater. Interfaces, 1 (7) 1553–1560 (2009)

    Article  CAS  Google Scholar 

  30. Dutta, P, Ray, N, Roy, S, Dasgupta, AK, Bouloussa, O, Sarkar, A, “Covalent Immobilization of Active Lysozyme on Si/Glass Surface Using Alkoxy Fischer Carbene Complex on SAM.” Org. Biomol. Chem., 9 5123–5128 (2011)

    Article  CAS  Google Scholar 

  31. Yu, WZ, Zhang, YZ, Liu, XM, Xiang, YM, Li, ZY, Wu, SL, “Synergistic Antibacterial Activity of Multi Components in Lysozyme/Chitosan/Silver/Hydroxyapatite Hybrid Coating.” Mater. Des., 139 351–362 (2018)

    Article  CAS  Google Scholar 

  32. Agarwal, S, Riffault, M, Hoey, D, Duffy, B, Curtin, J, Jaiswal, S, “Biomimetic Hyaluronic Acid-Lysozyme Composite Coating on AZ31 Mg Alloy with Combined Antibacterial and Osteoinductive Activities.” ACS Biomater. Sci. Eng., 3 3244–3253 (2017)

    Article  CAS  Google Scholar 

  33. Bella, ED, Parrilli, A, Bigi, A, Panzavolta, S, Amadori, S, Giavaresi, G, Martini, L, Borsari, V, Fini, M, “Osteoinductivity of Nanostructured Hydroxyapatite-Functionalized Gelatin Modulated by Human and Endogenous Mesenchymal Stromal Cells.” J. Biomed. Mater. Res. A, 106 914–923 (2018)

    Article  Google Scholar 

  34. Ran, JB, Hu, JX, Chen, L, Shen, XY, Tong, H, “Preparation and Characterization of Gelatin/Hydroxyapatite Nanocomposite for Bone Tissue Engineering.” Polym Compos., 52 71–81 (2015)

    Google Scholar 

  35. Song, SL, Liu, HY, Guo, XH, Hu, NF, “Comparative Electrochemical Study of Myoglobin Loaded in Different Polyelectrolyte Layer-by-Layer Films Assembled by Spin-Coating.” Electrochim. Acta., 54 5851–5857 (2009)

    Article  CAS  Google Scholar 

  36. Salarian, M, Solati-Hashjin, M, Shafiei, SS, Salarian, R, Nemati, ZA, “Template-Directed Hydrothermal Synthesis of Dandelion-Like Hydroxyapatite in the Presence of Cetyltrimethylammonium Bromide and Polyethylene Glycol.” Ceram. Int., 35 2563–2569 (2009)

    Article  CAS  Google Scholar 

  37. Li, OL, Tsunakawa, M, Shimada, Y, Nakamura, K, Nishinaka, K, Ishizaki, T, “Corrosion Resistance of Composite Oxide Film Prepared on Ca-added Flameresistant Magnesium Alloy AZCa612 by Micro-arc Oxidation.” Corros. Sci., 125 99–105 (2017)

    Article  CAS  Google Scholar 

  38. Chen, YS, Yan, GJ, Wang, XD, Qian, HM, Yi, JH, Huang, LL, Liu, P, “Bio-functionalization of Micro-arc Oxidized Magnesium Alloys via Thiol-ene Photochemistry.” Surf. Coat. Technol., 269 191–199 (2015)

    Article  CAS  Google Scholar 

  39. Song, GL, Shi, ZM, “Corrosion Mechanism and Evaluation of Anodized Magnesium Alloys.” Corros. Sci., 85 126–140 (2014)

    Article  CAS  Google Scholar 

  40. Andreeva, DV, Fix, D, Möhwald, H, Shchukin, DG, “Buffering Polyelectrolyte Multilayers for Active Corrosion Protection.” J. Mater. Chem., 18 1738–1740 (2008)

    Article  CAS  Google Scholar 

  41. Yang, Y, Qi, PK, Wen, F, Li, XY, Xia, Q, Maitz, MF, Yang, ZL, Shen, R, Tu, QF, Huang, N, “Mussel-Inspired One-Step Adherent Coating Rich in Amine Groups for Covalent Immobilization of Heparin: Hemocompatibility, Growth Behaviors of Vascular Cells, and Tissue Response.” ACS Appl. Mater. Interfaces, 6 14608–14620 (2014)

    Article  CAS  Google Scholar 

  42. Wei, YL, Chen, YS, Liu, P, Gao, Q, Sun, Y, Huang, CZ, “Surface Modification of Hydrophobic PMMA Intraocular Lens by the Immobilization of Hydroxyethyl Methacrylate for Improving Application in Ophthalmology.” Plasma Chem. Plasma Process., 31 811–825 (2011)

    Article  CAS  Google Scholar 

  43. Venault, A, Huang, CW, Zheng, J, Chinnathambi, A, Alharbi, SA, Chang, Y, Chang, Y, “Hemocompatible Biomaterials of Zwitterionic Sulfobetaine Hydrogels Regulated with pH-Responsive DMAEMA Random Sequences.” Int. J. Polym. Mater., 65 65–74 (2016)

    Article  CAS  Google Scholar 

  44. Yao, K, Huang, XD, Huang, XJ, Xu, ZK, “Improvement of the Surface Biocompatibility of Silicone Intraocular Lens by the Plasma-Induced Tethering of Phospholipid Moieties.” J. Biomed. Mater. Res. A, 78 684–692 (2006)

    Article  Google Scholar 

  45. Huang, XJ, Xu, ZK, Wan, LS, Wang, ZG, “Surface Modification of Polyacrylonitrile-Based Membranes by Chemical Reactions to Generate Phospholipid Moieties.” Langmuir, 21 2941–2947 (2005)

    Article  CAS  Google Scholar 

  46. Wetzels, G, Koole, LH, “Photoimmobilisation of Poly(N-vinylpyrrolidinone) as a Means to Improve Haemocompatibility of Polyurethane Biomaterials.” Biomaterials, 20 1879–1887 (1999)

    Article  CAS  Google Scholar 

  47. Xi, M, Jin, J, Zhang, BY, “Surface Modification of Poly(propylene carbonate) by Layer-by-Layer Assembly and its Hemocompatibility.” RSC Adv., 4 38943–38950 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21773149, 21273142, 21703132), State Key Project of Research and Development (No. 2016YFC1100300), and Program for Changjiang Scholars and Innovative Research Team in University (IRT_14R33).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yashao Chen or Changhao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, M., Zhang, X., Xiao, X. et al. Polyelectrolytes fabrication on magnesium alloy surface by layer-by-layer assembly technique with antiplatelet adhesion and antibacterial activities. J Coat Technol Res 16, 857–868 (2019). https://doi.org/10.1007/s11998-018-00162-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-018-00162-6

Keywords

Navigation