Skip to main content
Log in

Simulations and experimental investigation of paint film leveling

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The surface structure of a paint film is the result of the interplay of a variety of physical influences, e.g., the superposition of droplets during spray application, the surface tension-driven leveling, and the viscosity increase in the leveling phase. A numerical simulation program is presented that incorporates all the relevant mechanisms of paint film structure formation during and after spray application. The simulation program was validated by comparing simulations and leveling experiments. The influence of the initial film geometry and viscosity on the leveling behavior is demonstrated. For the investigations, model liquids and commercial paints with an increasing complexity of the physical properties were chosen: Newtonian flow behavior without solvent evaporation, Newtonian flow behavior with solvent evaporation, viscoelastic paints with non-Newtonian flow behavior. Four variants are proposed regarding how thixotropy can be measured and how a mathematical model can be created. The advantages and disadvantages of the variants with regard to the implementation of thixotropy in the simulations are listed. A method to predict the leveling behavior of thixotropic paints with simultaneous recovery of the viscous and elastic properties from rheological measurements using discrete relaxation time spectra is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

A :

Amplitude (m)

E :

Shrinkage due to evaporation (m/s)

g :

Gravitational constant (m/s2)

G′:

Storage modulus (Pa)

G″:

Loss modulus (Pa)

h :

Medium film thickness (m)

h l :

Film thickness at a given point (m)

h surf :

Height of the surface above the average substrate height as reference plane at a given point (m)

k :

A constant

k relax i :

Weighting factor in relaxation time spectrum (Pa·s)

R q :

Root-mean-square roughness (m)

t :

Time (s)

t relax i :

Relaxation time (s)

v :

Leveling velocity (1/s)

x :

x-coordinate (m)

y :

y-coordinate (m)

\(\dot{\gamma }\) :

Shear rate (1/s)

ε :

Local relative error (%)

η :

Dynamic viscosity (Pa·s)

η relax i :

Weighting factor for viscosity calculation from relaxation time spectrum (Pa)

θ :

Inclination angle (°)

λ :

Structure wavelength of the paint film surface (m)

σ :

Surface tension coefficient (N/m)

τ :

Shear stress (Pa)

ω :

Angular frequency (1/s)

References

  1. Fensterseifer, F, “Total Appearance Measurement.” 5th Wave-Scan User Meeting, Bingen, June 12–13, 2002

  2. Tanno, O, Ohtani, S, “Mechanism of Paint-Film Formation in Spray Coating.” Int. Chem. Eng., 19 306 (1979)

    Google Scholar 

  3. Böhm, CA, Wechselwirkung von Tropfen und Sprays newtonscher und nicht-newtonscher Fluide mit festen Oberflächen. Dissertation, TU Darmstadt, 2003

  4. Ye, Q, Tiedje, O, “Numerical Study on Air Entrapment in Droplets under Impact onto a Solid Surface”. ILASS—Europe 2013, 25th European Conference on Liquid Atomization and Spray Systems, Chania, September 2013

  5. Tropea, C, Marengo, M, “The Impact of Drops on Walls and Films.” Multiph. Sci. Technol., 11 (1) 19–36 (1999)

    Article  Google Scholar 

  6. Mundo, C, Sommerfeld, M, Tropea, C, “On the Modeling of Liquid Sprays Impinging on Surfaces.” At. Sprays, 8 (6) 625–652 (1998)

    Article  Google Scholar 

  7. Orchard, SE, “On Surface Levelling in Viscous Liquids and Gels.” Appl. Sci. Res., 11 (4) 451–461 (1962)

    Google Scholar 

  8. Eres, MH, Schwartz, LW, Roy, RV, “Fingering Phenomena for Driven Coating Films.” Phys. Fluids, 12 1278–1925 (2000)

    Article  Google Scholar 

  9. Schwartz, LW, “Theoretical and Numerical Modelling of Coating Flow on Simple and Complex Substrates Including Rheology, Drying and Marangoni Effects.” In: Durst, F, Raszillier, H (eds.) Advances in Coating and Drying of Thin Films, pp. 105–128. Shaker Verlag, Aachen, 1999

    Google Scholar 

  10. Roy, RV, Roberts, AJ, Simpson, ME, “A Lubrication Model of Coating Flows Over a Curved Substrate in Space.” Fluid Mech., 454 235–261 (2002)

    Article  Google Scholar 

  11. Schwartz, LW, Eley, RR, “A Mathematical Model for Three-dimensional Coating Flow with Thixotropy.” 16th International Coating Science and Technology Symposium, Atlanta, September 9–12, 2012

  12. Barnes, HA, “Thixotropy—A Review.” J. Non-Newton. Fluid Mech., 70 1–33 (1997)

    Article  Google Scholar 

  13. Eley, RR, “Rheology and Viscometry.” In: Koleske, JV (ed.) Paint and Coating Testing Manual, 14th edition, pp. 333–368. American Society for Testing and Materials, Philadelphia, 1995

    Google Scholar 

  14. Balmforth, NJ, Craster, RV, Toniolo, C, “Interfacial Instability in non-Newtonian Fluid Layers.” Phys. Fluids, 15 (11) 3370–3384 (2003)

    Article  Google Scholar 

  15. Pozrikidis, C, Fluid Dynamics—Theory, Computation and Numerical Simulation, 2nd ed. Springer, New York, 2009

    Google Scholar 

  16. Schwartz, LW, Weidner, DE, “Modeling of Coating Flows on Curved Surfaces.” J. Eng. Math., 29 (1) 91–103 (1995)

    Article  Google Scholar 

  17. Frenzen, G, Numerische Simulation des Verlaufsvorgangs viskoser Flüssigkeiten. Diplomarbeit, Universität Stuttgart, Stuttgart, 1987

    Google Scholar 

  18. Eres, MH, Weidner, DE, Schwartz, LW, “Three-Dimensional Direct Numerical Simulation of Surface-Tension-Gradient Effects on the Leveling of an Evaporating Multicomponent Fluid.” Langmuir, 15 (5) 1859–1871 (1999)

    Article  Google Scholar 

  19. Suzuki, S, Tachi, K, Okuda, C, “Mechanism of Orange Peel Defect Formation in Sprayed Coatings”. Proc. XIVth Intl. Conference in Organic Coatings, Athens 1988

  20. Tachi, K, Yamada, K, Okuda, C, “Gloss of Coatings Applied by Electrostatic Rotary Bell Spraying.” J. Coat. Technol., 62 19–25 (1990)

    Google Scholar 

  21. Schneider, M, Abschlussbericht Lackfilmverlauf beim Spritzlackieren. Fraunhofer IPA, Stuttgart, 1990

    Google Scholar 

  22. Hager, C, Lackfilmstrukturbildung bei der Spritzlackier-Applikation. Dissertation, Universität Stuttgart, Stuttgart, 2013

  23. Schabel, W, Scharfer, P, “Short course coating and drying of thin films”. Karlsruhe, KIT, (9 May 2016)

  24. Ondratschek, D, Schneider, M, Vogelsang, H, Forschungsbericht Forcierung des Wasserlackeinsatzes durch neue Trocknungsverfahren. Fraunhofer IPA, Stuttgart, 2001

    Google Scholar 

  25. Keunings, R, Bousfield, DW, “Analysis of Surface Tension Driven Levelling in Viscoelastic Films.” J. Non-Newton. Fluid Mech., 22 (2) 219–233 (1987)

    Article  Google Scholar 

  26. Laun, HM, “Description of the Non-linear Shear Behaviour of a Low Density Polyethylene Melt by Means of an Experimentally Determined Strain Dependent Memory Function.” Rheol. Acta, 17 (1) 1–15 (1978)

    Article  Google Scholar 

  27. Klarskov Kristiansen, M, Jakobson, J, Saarnak, A, “Verification of the Orchard Levelling Analysis.” Appl. Rheol., 2 30 (1992)

    Google Scholar 

Download references

Acknowledgments

We would like to thank the Forschungsgesellschaft für Pigmente und Lacke e.V. for the financial support of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Seeler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seeler, F., Hager, C., Tiedje, O. et al. Simulations and experimental investigation of paint film leveling. J Coat Technol Res 14, 767–781 (2017). https://doi.org/10.1007/s11998-017-9934-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-017-9934-5

Keywords

Navigation