Skip to main content
Log in

Fabrication method of large-scale and mechanically durable superhydrophobic silicon rubber/aerogel coating on fibrous substrates

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

We report on a simple and large-scale method for the fabrication of mechanically durable superhydrophobic coatings via electrostatic powder spray of aerogel micro particles on the fibrous substrates. The coatings are obtained by dip-coating fibrous substrates in silicon rubber/toluene solution, followed by the electrostatic spray of aerogel micro particles on the samples. The method is applicable to a large number of fibrous substrates with different pore sizes. Depending on the silicon rubber solution concentration, it is possible to obtain surfaces with hierarchical morphology. The wetting behavior dependent on the concentration of silicon rubber/toluene solution can provide coatings with static water contact angles (160°–168°) and sliding angles (3°–21°). Fibrous surfaces obtained were characterized by scanning electron microscopy and static water contact angle measurement. Also, mechanical durability of the surfaces was examined using high pressure airflow, sandpaper abrasion test, and water static pressure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Feng, L, Li, S, Li, Y, Li, H, Zhang, L, Zhai, J, Song, Y, Liu, B, Jiang, L, Zhu, D, “Superhydrophobic Surfaces: From Natural to Artificial.” Adv. Mater., 14 (24) 1857–1860 (2002)

    Article  Google Scholar 

  2. Lafuma, A, Quéré, D, “Superhydrophobic States.” Nat. Mater., 2 (7) 457–460 (2003)

    Article  Google Scholar 

  3. Blossey, R, “Self-cleaning Surfaces—Virtual Realities.” Nat. Mater., 2 (5) 301–306 (2003)

    Article  Google Scholar 

  4. Genzer, J, Efimenko, K, “Recent Developments in Superhydrophobic Surfaces and Their Relevance to Marine Fouling: a Review.” Biofouling, 22 (5) 339–360 (2006)

    Article  Google Scholar 

  5. Ma, M, Hill, RM, Lowery, JL, Fridrikh, SV, Rutledge, GC, “Electrospun Poly (Styrene-Block-Dimethylsiloxane) Block Copolymer Fibers Exhibiting Superhydrophobicity.” Langmuir, 21 (12) 5549–5554 (2005)

    Article  Google Scholar 

  6. Agarwal, S, Horst, S, Bognitzki, M, “Electrospinning of Fluorinated Polymers: Formation of Superhydrophobic Surfaces.” Macromol. Mater. Eng., 291 (6) 592–601 (2006)

    Article  Google Scholar 

  7. Ogawa, T, Ding, B, Sone, Y, Shiratori, S, “Super-Hydrophobic Surfaces of Layer-by-Layer Structured Film-Coated Electrospun Nanofibrous Membranes.” Nanotechnology, 18 (16) 165607 (2007)

    Article  Google Scholar 

  8. Shirtcliffe, NJ, McHale, G, Newton, MI, Perry, CC, Roach, P, “Superhydrophobic to Superhydrophilic Transitions of Sol–Gel Films for Temperature, Alcohol or Surfactant Measurement.” Mater. Chem. Phys., 103 (1) 112–117 (2007)

    Article  Google Scholar 

  9. Li, X, Chen, G, Ma, Y, Feng, L, Zhao, H, Jiang, L, Wang, F, “Preparation of a Super-Hydrophobic Poly(Vinyl Chloride) Surface Via Solvent–Nonsolvent Coating.” Polymer, 47 (2) 506–509 (2006)

    Article  Google Scholar 

  10. Hosono, E, Fujihara, S, Honma, I, Zhou, H, “Superhydrophobic Perpendicular Nanopin Film by the Bottom-Up Process.” J. Am. Chem. Soc., 127 (39) 13458–13459 (2005)

    Article  Google Scholar 

  11. Shi, F, Song, Y, Niu, J, Xia, X, Wang, Z, Zhang, X, “Facile Method to Fabricate a Large-Scale Superhydrophobic Surface by Galvanic Cell Reaction.” Chem. Mater., 18 (5) 1365–1368 (2006)

    Article  Google Scholar 

  12. Han, JT, Jang, Y, Lee, DY, Park, JH, Song, SH, Ban, DY, Cho, K, “Fabrication of a Bionic Superhydrophobic Metal Surface by Sulfur-Induced Morphological Development.” J. Mater. Chem., 15 (30) 3089–3092 (2005)

    Article  Google Scholar 

  13. Baldacchini, T, Carey, JE, Zhou, M, Mazur, E, “Superhydrophobic Surfaces Prepared by Microstructuring of Silicon Using a Femtosecond Laser.” Langmuir, 22 (11) 4917–4919 (2006)

    Article  Google Scholar 

  14. Lacroix, LM, Lejeune, M, Ceriotti, L, Kormunda, M, Meziani, T, Colpo, P, Rossi, F, “Tuneable Rough Surfaces: A New Approach for Elaboration of Superhydrophobic Films.” Surf. Sci., 592 (1) 182–188 (2005)

    Article  Google Scholar 

  15. Wang, MF, Raghunathan, N, Ziaie, B, “A nonlithographic Top-Down Electrochemical Approach for Creating Hierarchical (Micro-nano) Superhydrophobic Silicon Surfaces.” Langmuir, 23 (5) 2300–2303 (2007)

    Article  Google Scholar 

  16. Yoshimitsu, Z, Nakajima, A, Watanabe, T, Hashimoto, K, “Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets.” Langmuir, 18 (15) 5818–5822 (2002)

    Article  Google Scholar 

  17. Zhu, L, Feng, Y, Ye, X, Zhou, Z, “Tuning Wettability and Getting Superhydrophobic Surface by Controlling Surface Roughness with Well-Designed Microstructures.” Sens. Actuators, A, 130 595–600 (2006)

    Article  Google Scholar 

  18. Choi, CH, Kim, CJ, “Fabrication of a Dense Array of Tall Nanostructures Over a Large Sample Area with Sidewall Profile and Tip Sharpness Control.” Nanotechnology, 17 (21) 5326 (2006)

    Article  Google Scholar 

  19. Li, Y, Huang, XJ, Heo, SH, Li, CC, Choi, YK, Cai, WP, Cho, SO, “Superhydrophobic Bionic Surfaces with Hierarchical Microsphere/SWCNT Composite Arrays.” Langmuir, 23 (4) 2169–2174 (2007)

    Article  Google Scholar 

  20. Sun, C, Ge, LQ, Gu, ZZ, “Fabrication of Super-Hydrophobic Film with Dual-Size Roughness by Silica Sphere Assembly.” Thin Solid Films, 515 (11) 4686–4690 (2007)

    Article  Google Scholar 

  21. Patankar, NA, “On the Modeling of Hydrophobic Contact Angles On Rough Surfaces.” Langmuir, 19 (4) 1249–1253 (2003)

    Article  Google Scholar 

  22. Li, J, Fu, J, Cong, Y, Wu, Y, Xue, L, Han, Y, “Macroporous Fluoropolymeric Films Templated by Silica Colloidal Assembly: A Possible Route to Super-Hydrophobic Surfaces.” Appl. Surf. Sci., 252 (6) 2229–2234 (2006)

    Article  Google Scholar 

  23. Lee, SM, Kwon, TH, “Effects of Intrinsic Hydrophobicity on Wettability of Polymer Replicas of a Superhydrophobic Lotus Leaf.” J. Micromech. Microeng., 17 (4) 687 (2007)

    Article  Google Scholar 

  24. Bormashenko, E, Stein, T, Whyman, G, Bormashenko, Y, Pogreb, R, “Wetting Properties of the Multiscaled Nanostructured Polymer and Metallic Superhydrophobic Surfaces.” Langmuir, 22 (24) 9982–9985 (2006)

    Article  Google Scholar 

  25. Xie, Q, Xu, J, Feng, L, Jiang, L, Tang, W, Luo, X, Han, CC, “Facile Creation of a Super-Amphiphobic Coating Surface with Bionic Microstructure.” Adv. Mater., 16 (4) 302–305 (2004)

    Article  Google Scholar 

  26. Xie, Q, Fan, G, Zhao, N, Guo, X, Xu, J, Dong, J, Zhang, L, Zhang, Y, “Facile Creation of a Bionic Super Hydrophobic Block Copolymer Surface.” Adv. Mater., 16 (20) 1830–1833 (2004)

    Article  Google Scholar 

  27. Zhu, Y, Zhang, J, Zheng, Y, Huang, Z, Feng, L, Jiang, L, “Stable, Superhydrophobic, and Conductive Polyaniline/Polystyrene Films for Corrosive Environments.” Adv. Funct. Mater., 16 (4) 568–574 (2006)

    Article  Google Scholar 

  28. Manoudis, PN, Karapanagiotis, I, Tsakalof, A, Zuburtikudis, I, Panayiotou, C, “Superhydrophobic Composite Films Produced on Various Substrates.” Langmuir, 24 (19) 11225–11232 (2008)

    Article  Google Scholar 

  29. Yilgor, I, Bilgin, S, Isik, M, Yilgor, E, “Tunable Wetting of Polymer Surfaces.” Langmuir, 28 (41) 14808–14814 (2012)

    Article  Google Scholar 

  30. Sparks, BJ, Hoff, EF, Xiong, L, Goetz, JT, Patton, DL, “Superhydrophobic Hybrid Inorganic–organic Thiol-Ene Surfaces Fabricated via Spray-Deposition and Photopolymerization.” ACS Appl. Mater. Interfaces, 5 (5) 1811–1817 (2013)

    Article  Google Scholar 

  31. Zhai, L, Cebeci, FC, Cohen, RE, Rubner, MF, “Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers.” Nano Lett., 4 (7) 1349–1353 (2004)

    Article  Google Scholar 

  32. Wu, X, Zheng, L, Wu, D, “Fabrication of Superhydrophobic Surfaces from Microstructured ZnO-Based Surfaces via a Wet-Chemical Route.” Langmuir, 21 (7) 2665–2667 (2005)

    Article  Google Scholar 

  33. Chen, A, Peng, X, Koczkur, K, Miller, B, “Super-Hydrophobic Tin Oxide Nanoflowers.” Chem. Commun., 17 1964–1965 (2004)

    Article  Google Scholar 

  34. Shibuichi, S, Yamamoto, T, Onda, T, Tsujii, K, “Super Water-and Oil-Repellent Surfaces Resulting from Fractal Structure.” J. Colloid Interface Sci., 208 (1) 287–294 (1998)

    Article  Google Scholar 

  35. Sakaue, H, Tabei, T, Kameda, M, “Hydrophobic Monolayer Coating on Anodized Aluminum Pressure-Sensitive Paint.” Sens. Actuators B Chem., 119 (2) 504–511 (2006)

    Article  Google Scholar 

  36. Chen, L, Chen, M, Zhou, H, Chen, J, “Preparation of a 2024Al-Based Super-Hydrophobic Surface.” J. Dispersion Sci. Technol., 30 (1) 48–50 (2009)

    Article  Google Scholar 

  37. Sun, C, Ge, LQ, Gu, ZZ, “Fabrication of Super-Hydrophobic Film with Dual-Size Roughness by Silica Sphere Assembly.” Thin Solid Films, 515 (11) 4686–4690 (2007)

    Article  Google Scholar 

  38. Li, Y, Huang, XJ, Heo, SH, Li, CC, Choi, YK, Cai, WP, Cho, SO, “Superhydrophobic Bionic Surfaces with Hierarchical Microsphere/SWCNT Composite Arrays.” Langmuir, 23 (4) 2169–2174 (2007)

    Article  Google Scholar 

  39. Karunakaran, RG, Lu, CH, Zhang, Z, Yang, S, “Highly Transparent Superhydrophobic Surfaces from the Coassembly of Nanoparticles (≤ 100 nm).” Langmuir, 27 (8) 4594–4602 (2011)

    Article  Google Scholar 

  40. Deng, X, Mammen, L, Zhao, Y, Lellig, P, Müllen, K, Li, C, Butt, HJ, Vollmer, D, “Transparent, Thermally Stable and Mechanically Robust Superhydrophobic Surfaces Made from Porous Silica Capsules.” Adv. Mater., 23 (26) 2962–2965 (2011)

    Article  Google Scholar 

  41. Michielsen, S, Lee, HJ, “Design of a Superhydrophobic Surface Using Woven Structures.” Langmuir, 23 (11) 6004–6010 (2007)

    Article  Google Scholar 

  42. Liu, Y, Tang, J, Wang, R, Lu, H, Li, L, Kong, Y, Qi, K, Xin, JH, “Artificial Lotus Leaf Structures from Assembling Carbon Nanotubes and Their Applications in Hydrophobic Textiles.” J. Mater. Chem., 17 (11) 1071–1078 (2007)

    Article  Google Scholar 

  43. Wang, T, Hu, X, Dong, S, “A General Route to Transform Normal Hydrophilic Cloths into Superhydrophobic Surfaces.” Chem. Commun., 18 1849–1851 (2007)

    Article  Google Scholar 

  44. Ma, M, Hill, RM, Lowery, JL, Fridrikh, SV, Rutledge, GC, “Electrospun Poly(Styrene-Block-Dimethylsiloxane) Block Copolymer Fibers Exhibiting Superhydrophobicity.” Langmuir, 21 (12) 5549–5554 (2005)

    Article  Google Scholar 

  45. Agarwal, S, Horst, S, Bognitzki, M, “Electrospinning of Fluorinated Polymers: Formation of Superhydrophobic Surfaces.” Macromol. Mater. Eng., 291 (6) 592–601 (2006)

    Article  Google Scholar 

  46. Ma, M, Gupta, M, Li, Z, Zhai, L, Gleason, KK, Cohen, RE, Rubner, MF, Rutledge, GC, “Decorated Electrospun Fibers Exhibiting Superhydrophobicity.” Adv. Mater., 19 (2) 255–259 (2007)

    Article  Google Scholar 

  47. Ogawa, T, Ding, B, Sone, Y, Shiratori, S, “Super-Hydrophobic Surfaces Of layer-by-Layer Structured Film-Coated Electrospun Nanofibrous Membranes.” Nanotechnology, 18 (16) 165607 (2007)

    Article  Google Scholar 

  48. Zheng, J, He, A, Li, J, Xu, J, Han, CC, “Studies on the Controlled Morphology and Wettability of Polystyrene Surfaces by Electrospinning or Electrospraying.” Polymer, 47 (20) 7095–7102 (2006)

    Article  Google Scholar 

  49. Bhushan, B, Nosonovsky, M, Jung, YC, “Towards Optimization of Patterned Superhydrophobic Surfaces.” J. R. Soc. Interface, 4 (15) 643–648 (2007)

    Article  Google Scholar 

  50. Nosonovsky, M, Bhushan, B, “Biomimetic Superhydrophobic Surfaces: Multiscale Approach.” Nano Lett., 7 (9) 2633–2637 (2007)

    Article  Google Scholar 

  51. Nosonovsky, M, Bhushan, B, “Hierarchical Roughness Optimization for Biomimetic Superhydrophobic Surfaces.” Ultramicroscopy, 107 (10) 969–979 (2007)

    Article  Google Scholar 

  52. Bhushan, B, Jung, YC, “Wetting Study of Patterned Surfaces for Superhydrophobicity.” Ultramicroscopy, 107 (10) 1033–1041 (2007)

    Article  Google Scholar 

  53. Martines, E, Seunarine, K, Morgan, H, Gadegaard, N, Wilkinson, CD, Riehle, MO, “Superhydrophobicity and Superhydrophilicity of Regular Nanopatterns.” Nano Lett., 5 (10) 2097–2103 (2005)

    Article  Google Scholar 

  54. Fürstner, R, Barthlott, W, Neinhuis, C, Walzel, P, “Wetting and Self-cleaning Properties of Artificial Superhydrophobic Surfaces.” Langmuir, 21 (3) 956–961 (2005)

    Article  Google Scholar 

  55. Martín, C, Rius, G, Borrisé, X, Pérez-Murano, F, “Nanolithography on Thin Layers of PMMA Using Atomic Force Microscopy.” Nanotechnology, 16 (8) 1016 (2005)

    Article  Google Scholar 

  56. Koch, K, Bhushan, B, Jung, YC, Barthlott, W, “Fabrication of Artificial Lotus Leaves and Significance of Hierarchical Structure for Superhydrophobicity and Low Adhesion.” Soft Matter, 5 (7) 1386–1393 (2009)

    Article  Google Scholar 

  57. Zhai, L, Cebeci, FC, Cohen, RE, Rubner, MF, “Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers.” Nano Lett., 4 (7) 1349–1353 (2004)

    Article  Google Scholar 

  58. Bhushan, B, Jung, YC, Niemietz, A, Koch, K, “Lotus-Like Biomimetic Hierarchical Structures Developed by the Self-assembly of Tubular Plant Waxes.” Langmuir, 25 (3) 1659–1666 (2009)

    Article  Google Scholar 

  59. Huang, L, Lau, SP, Yang, HY, Leong, ESP, Yu, SF, Prawer, S, “Stable Superhydrophobic Surface via Carbon Nanotubes Coated with a ZnO Thin Film.” J. Phys. Chem. B, 109 (16) 7746–7748 (2005)

    Article  Google Scholar 

  60. Pan, J, Song, X, Zhang, J, Shen, H, Xiong, Q, “Switchable Wettability in SnO2 Nanowires and SnO2@ SnO2 Heterostructures.” J. Phys. Chem. C, 115 (45) 22225–22231 (2011)

    Article  Google Scholar 

  61. Crick, CR, Parkin, IP, “CVD of Copper and Copper Oxide Thin Films via the In Situ Reduction Of Copper (ii) Nitrate—A Route to Conformal Superhydrophobic Coatings.” J. Mater. Chem., 21 (38) 14712–14716 (2011)

    Article  Google Scholar 

  62. Li, L, Breedveld, V, Hess, DW, “Creation of Superhydrophobic Stainless Steel Surfaces by Acid Treatments and Hydrophobic Film Deposition.” ACS Appl. Mater. Interfaces, 4 (9) 4549–4556 (2012)

    Article  Google Scholar 

  63. Jansen, H, de Boer, M, Legtenberg, R, Elwenspoek, M, “The Black Silicon Method: A Universal Method for Determining the Parameter Setting of a Fluorine-Based Reactive Ion Etcher in Deep Silicon Trench Etching with Profile Control.” J. Micromech. Microeng., 5 (2) 115 (1995)

    Article  Google Scholar 

  64. Balu, B, Breedveld, V, Hess, DW, “Fabrication of “Roll-Off” and “Sticky” Superhydrophobic Cellulose Surfaces via Plasma Processing.” Langmuir, 24 (9) 4785–4790 (2008)

    Article  Google Scholar 

  65. Kamegawa, T, Shimizu, Y, Yamashita, H, “Superhydrophobic Surfaces with Photocatalytic Self-cleaning Properties by Nanocomposite Coating of TiO2 and Polytetrafluoroethylene.” Adv. Mater., 24 (27) 3697–3700 (2012)

    Article  Google Scholar 

  66. Ogihara, H, Xie, J, Okagaki, J, Saji, T, “Simple Method for Preparing Superhydrophobic Paper: Spray-Deposited Hydrophobic Silica Nanoparticle Coatings Exhibit High Water-Repellency and Transparency.” Langmuir, 28 (10) 4605–4608 (2012)

    Article  Google Scholar 

  67. Tsai, HJ, Lee, YL, “Facile Method to Fabricate Raspberry-Like Particulate Films for Superhydrophobic Surfaces.” Langmuir, 23 (25) 12687–12692 (2007)

    Article  Google Scholar 

  68. Zhao, Y, Tang, Y, Wang, X, Lin, T, “Superhydrophobic Cotton Fabric Fabricated by Electrostatic Assembly of Silica Nanoparticles and Its Remarkable Buoyancy.” Appl. Surf. Sci., 256 (22) 6736–6742 (2010)

    Article  Google Scholar 

  69. Wang, N, Xiong, D, Deng, Y, Shi, Y, Wang, K, “Mechanically Robust Superhydrophobic Steel Surface with Anti-icing, UV-Durability, and Corrosion Resistance Properties.” ACS Appl. Mater. Interfaces, 7 (11) 6260–6272 (2015)

    Article  Google Scholar 

  70. Liu, L, Xu, F, Ma, L, “Facile Fabrication of a Superhydrophobic Cu Surface via a Selective Etching of High-Energy Facets.” J. Phys. Chem. C, 116 (35) 18722–18727 (2012)

    Article  Google Scholar 

  71. Su, F, Yao, K, “Facile Fabrication of Superhydrophobic Surface with Excellent Mechanical Abrasion and Corrosion Resistance on Copper Substrate by a Novel Method.” ACS Appl. Mater. Interfaces, 6 (11) 8762–8770 (2014)

    Article  Google Scholar 

  72. Zhang, Y, Ge, D, Yang, S, “Spray-Coating of Superhydrophobic Aluminum Alloys with Enhanced Mechanical Robustness.” J. Colloid Interface Sci., 423 101–107 (2014)

    Article  Google Scholar 

  73. Cho, H, Kim, D, Lee, C, Hwang, W, “A Simple Fabrication Method for Mechanically Robust Superhydrophobic Surface by Hierarchical Aluminum Hydroxide Structures.” Curr. Appl. Phys., 13 (4) 762–767 (2013)

    Article  Google Scholar 

  74. Ou, J, Hu, W, Liu, S, Xue, M, Wang, F, Li, W, “Superoleophobic Textured Copper Surfaces Fabricated by Chemical Etching/Oxidation and Surface Fluorination.” ACS Appl. Mater. Interfaces, 5 (20) 10035–10041 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Saadat-Bakhsh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouri, N.M., Saadat-Bakhsh, M. Fabrication method of large-scale and mechanically durable superhydrophobic silicon rubber/aerogel coating on fibrous substrates. J Coat Technol Res 14, 477–488 (2017). https://doi.org/10.1007/s11998-016-9868-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-016-9868-3

Keywords

Navigation