Skip to main content
Log in

Facile, robust and large-scale fabrication method of mechanically durable superhydrophobic PDMS/aerogel coating on fibrous substrates

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A simple method was developed for the large-scale fabrication of mechanically durable superhydrophobic surfaces with roughness on the microscale. The method is applicable for a large number of fibrous substrates with different pore sizes. With this method, it is possible to prepare polymeric fibrous substrates with a water droplet (5 μL) roll-off angle of less than 5°. The method developed is based on dip-coating of fibrous substrates in polydimethylsiloxane (PDMS)/toluene solution, followed by the electrostatic spray of aerogel microparticles on the samples. Depending on the PDMS solution concentration, it is possible to obtain a superhydrophobic surface with dual-scale roughness on the microscale. In this article, preparation and characterization of surfaces with electrostatic powder spray on the common fibrous cellulose substrates are provided. Fibrous surfaces obtained were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy and static water contact angle measurement. Effects of PDMS/toluene solution concentration on the surface morphology and wettability behavior of surfaces were investigated. We demonstrate the mechanical durability of the surface using high-pressure air flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Agarwal S, Horst S, Bognitzki M (2006) Electrospinning of fluorinated polymers: formation of superhydrophobic surfaces. Macromol Mater Eng 291:592–601

    Article  CAS  Google Scholar 

  • Baldacchini T, Carey JE, Zhou M, Mazur E (2006) Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser. Langmuir 22:4917–4919

    Article  CAS  Google Scholar 

  • Balu B, Breedveld V, Hess DW (2008) Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir 24:4785–4790

    Article  CAS  Google Scholar 

  • Bhushan B, Jung YC (2007) Wetting study of patterned surfaces for superhydrophobicity. Ultramicroscopy 107:1033–1041

    Article  CAS  Google Scholar 

  • Bhushan B, Nosonovsky M, Jung YC (2007) Towards optimization of patterned superhydrophobic surfaces. J R Soc Interface 4:643–648

    Article  CAS  Google Scholar 

  • Blossey R (2003) Self-cleaning surfaces—virtual realities. Nat Mater 2:301–306

    Article  CAS  Google Scholar 

  • Chen A, Peng X, Koczkur K, Miller B (2004) Super-hydrophobic tin oxide nanoflowers. Chem Commun 17:1964–1965

    Article  Google Scholar 

  • Deng X, Mammen L, Zhao Y, Lellig P, Müllen K, Li C, Vollmer D (2011) Transparent, thermally stable and mechanically robust superhydrophobic surfaces made from porous silica capsules. Adv Mater 23:2962–2965

    Article  CAS  Google Scholar 

  • Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860

    Article  CAS  Google Scholar 

  • Han J, Jang Y, Lee D, Park J, Song S, Ban D, Cho K (2005) Fabrication of a bionic superhydrophobic metal surface by sulfur-induced morphological development. J Mater Chem 15:3089–3092

    Article  CAS  Google Scholar 

  • Hosono E, Fujihara S, Honma I, Zhou H (2005) Superhydrophobic perpendicular nanopin film by the bottom-up process. J Am Chem Soc 127:13458–13459

    Article  CAS  Google Scholar 

  • Huang L, Lau SP, Yang HY, Leong ES, Yu SF, Prawer S (2005) Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film. J Phys Chem B 109:7746–7748

    Article  CAS  Google Scholar 

  • Kamegawa T, Shimizu Y, Yamashita H (2012) Superhydrophobic surfaces with photocatalytic self-cleaning properties by nanocomposite coating of TiO2 and polytetrafluoroethylene. Adv Mater 24:3697–3700

    Article  CAS  Google Scholar 

  • Karunakaran RG, Lu CH, Zhang Z, Yang S (2011) Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (≤100 nm). Langmuir 27:4594–4602

    Article  CAS  Google Scholar 

  • Koch K, Bhushan B, Jung YC, Barthlott W (2009) Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter 5:1386–1393

    Article  CAS  Google Scholar 

  • Lacroix LM, Lejeune M, Ceriotti L, Kormunda M, Meziani T, Colpo P, Rossi F (2005) Tuneable rough surfaces: a new approach for elaboration of superhydrophobic films. Surf Sci 592:182–188

    Article  CAS  Google Scholar 

  • Lafuma A, Quéré D (2003) Superhydrophobic states. Nat Mater 2:457–460

    Article  CAS  Google Scholar 

  • Li X, Chen G, Ma Y, Feng L, Zhao H, Jiang L, Wang F (2006) Preparation of a super-hydrophobic poly (vinyl chloride) surface via solvent–nonsolvent coating. Polymer 47:506–509

    Article  CAS  Google Scholar 

  • Li L, Breedveld V, Hess DW (2012) Creation of superhydrophobic stainless steel surfaces by acid treatments and hydrophobic film deposition. ACS Appl Mater Interfaces 4:4549–4556

    Article  CAS  Google Scholar 

  • Liu Y, Tang J, Wang R, Lu H, Li L, Kong Y, Qi K, Xin J (2007) Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles. J Mater Chem 17:1071–1078

    Article  CAS  Google Scholar 

  • Liu L, Xu F, Ma L (2012) Facile fabrication of a superhydrophobic Cu surface via a selective etching of high-energy facets. J Phys Chem C 116:18722–18727

    Article  CAS  Google Scholar 

  • Ma M, Hill RM, Lowery JL, Fridrikh SV, Rutledge GC (2005) Electrospun poly (styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity. Langmuir 21:5549–5554

    Article  CAS  Google Scholar 

  • Ma M, Gupta M, Li Z, Zhai L, Gleason KK, Cohen RE, Rubner MF, Rutledge GC (2007) Decorated electrospun fibers exhibiting superhydrophobicity. Adv Mater 19:255–259

    Article  CAS  Google Scholar 

  • Manoudis PN, Karapanagiotis I, Tsakalof A, Zuburtikudis I, Panayiotou C (2008) Superhydrophobic composite films produced on various substrates. Langmuir 24:11225–11232

    Article  CAS  Google Scholar 

  • Martines E, Seunarine K, Morgan H, Gadegaard N, Wilkinson CD, Riehle MO (2005) Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Lett 5:2097–2103

    Article  CAS  Google Scholar 

  • Michielsen S, Lee HJ (2007) Design of a superhydrophobic surface using woven structures. Langmuir 23:6004–6010

    Article  CAS  Google Scholar 

  • Nosonovsky M, Bhushan B (2007a) Biomimetic superhydrophobic surfaces: multiscale approach. Nano Lett 7:2633–2637

    Article  CAS  Google Scholar 

  • Nosonovsky M, Bhushan B (2007b) Hierarchical roughness optimization for biomimetic superhydrophobic surfaces. Ultramicroscopy 107:969–979

    Article  CAS  Google Scholar 

  • Ogawa T, Ding B, Sone Y, Shiratori S (2007) Super-hydrophobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes. Nanotechnology 18:165607

    Article  Google Scholar 

  • Pan J, Song X, Zhang J, Shen H, Xiong Q (2011) Switchable wettability in SnO2 nanowires and SnO2@ SnO2 heterostructures. J Phys Chem C 115:22225–22231

    Article  CAS  Google Scholar 

  • Shi F, Song Y, Niu J, Xia X, Wang Z, Zhang X (2006) Facile method to fabricate a large-scale superhydrophobic surface by galvanic cell reaction. Chem Mater 18:1365–1368

    Article  CAS  Google Scholar 

  • Su F, Yao K (2014) Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method. ACS Appl Mater Interfaces 6:8762–8770

    Article  CAS  Google Scholar 

  • Sun C, Ge LQ, Gu ZZ (2007) Fabrication of super-hydrophobic film with dual-size roughness by silica sphere assembly. Thin Solid Films 515:4686–4690

    Article  CAS  Google Scholar 

  • Tsai HJ, Lee YL (2007) Facile method to fabricate raspberry-like particulate films for superhydrophobic surfaces. Langmuir 23:12687–12692

    Article  CAS  Google Scholar 

  • Wang T, Hu X, Dong S (2007) A general route to transform normal hydrophilic cloths into superhydrophobic surfaces. Chem Commun 18:1849–1851

    Article  Google Scholar 

  • Wang N, Xiong D, Deng Y, Shi Y, Wang K (2015) Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties. ACS Appl Mater Interfaces 7:6260–6272

    Article  CAS  Google Scholar 

  • Wu X, Zheng L, Wu D (2005) Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route. Langmuir 21:2665–2667

    Article  CAS  Google Scholar 

  • Xie Q, Xu J, Feng L, Jiang L, Tang W, Luo X, Han CC (2004) Facile creation of a super-amphiphobic coating surface with bionic microstructure. Adv Mater 16:302–305

    Article  CAS  Google Scholar 

  • Yilgor I, Bilgin S, Isik M, Yilgor E (2012) Tunable wetting of polymer surfaces. Langmuir 28:14808–14814

    Article  CAS  Google Scholar 

  • Zhai L, Cebeci FC, Cohen RE, Rubner MF (2004) Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Lett 4:1349–1353

    Article  CAS  Google Scholar 

  • Zhang Y, Ge D, Yang S (2014) Spray-coating of superhydrophobic aluminum alloys with enhanced mechanical robustness. J Colloid Interface Sci 423:101–107

    Article  CAS  Google Scholar 

  • Zhao Y, Tang Y, Wang X, Lin T (2010) Superhydrophobic cotton fabric fabricated by electrostatic assembly of silica nanoparticles and its remarkable buoyancy. Appl Surf Sci 256:6736–6742

    Article  CAS  Google Scholar 

  • Zhu Y, Zhang J, Zheng Y, Huang Z, Feng L, Jiang L (2006) Stable, superhydrophobic, and conductive polyaniline/polystyrene films for corrosive environments. Adv Funct Mater 16:568–574

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Saadat-Bakhsh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadat-Bakhsh, M., Ahadian, H.R. & Nouri, N.M. Facile, robust and large-scale fabrication method of mechanically durable superhydrophobic PDMS/aerogel coating on fibrous substrates. Cellulose 24, 3453–3467 (2017). https://doi.org/10.1007/s10570-017-1359-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1359-x

Keywords

Navigation