Skip to main content
Log in

Investigating the role of surface treated titanium dioxide nanoparticles on self-cleaning behavior of an acrylic facade coating

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

In this study, the addition of silane treated TiO2 nanoparticles on the self-cleaning properties of an acrylic facade coating was evaluated. Tetraethoxyorthosilicate, TEOS, was used for surface treatment of TiO2 nanoparticles. The silica grafting on the TiO2 nanoparticles was characterized via Fourier Transform Infrared spectroscopy, specific surface area measurement, pore size distribution, and real density measurements. The effect of surface treatment and content of nanoparticles on the photocatalytic activity of acrylic coating and self-cleaning properties was studied. For this purpose, the photodegradation of Rhodamine B (Rh.B) dyestuff, as a colorant model, was investigated by colorimetric technique, while the coating samples were exposed to UVA irradiation. Performance of the acrylic coating films was evaluated by gloss change during accelerated weathering conditions. Also, the surface morphology of the coating films was studied using SEM analysis. The results showed that the addition of both treated and untreated TiO2 nanoparticles provides self-cleaning property to the acrylic coatings. However, silica surface treatment of TiO2 nanoparticles reduces the coating degradation caused by TiO2. This is more evident when higher concentrations of the treated TiO2 nanoparticles are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nun, E, Oles, M, Schleich, B, “Lotus Effect-Surfaces.” Macromol. Symp., 187 677–682 (2002)

    Article  CAS  Google Scholar 

  2. Blossey, R, “Self-Cleaning Surfaces—Virtual Realities.” Nat. Mater., 2 301–306 (2003)

    Article  CAS  Google Scholar 

  3. Parkin, I, Palgrave, R, “Self-Cleaning Coatings.” J. Mater. Chem., 15 1689–1695 (2005)

    Article  CAS  Google Scholar 

  4. Ma, M, Hill, R, “Superhydrophobic Surfaces.” Curr. Opin. Colloid Interface Sci., 11 193–202 (2006)

    Article  CAS  Google Scholar 

  5. Zhang, X, Shi, F, Niu, J, Jiang, Y, Wang, Z, “Superhydrophobic Surfaces: From Structural Control to Functional Application.” J. Mater. Chem., 18 621–633 (2008)

    Article  CAS  Google Scholar 

  6. Hochmannova, L, Vytrasova, J, “Photocatalytic and Antimicrobial Effects of Interior Paints.” Prog. Org. Coat., 67 1–5 (2010)

    Article  CAS  Google Scholar 

  7. Fujishima, A, Hashimoto, K, Watanabe, T, TiO 2 Photocatalysis: Fundamental and Applications. BKC, Tokyo, 1999

    Google Scholar 

  8. Winkler, J, Titanium Dioxide. Vincentz, Hannover, 2003

    Google Scholar 

  9. Fujishima, A, Rao, TN, Tryk, DA, “Titanium Dioxide Photocatalysis.” J. Photochem. Photobiol., C, 1 (1) 1–21 (2000)

    Article  CAS  Google Scholar 

  10. Ghosh, S, Functional Coatings: By Polymer Microencapsulation. Wiley-VCH Verlag Gmbh, Germany, 2006

    Book  Google Scholar 

  11. Braun, JH, “Titanium Dioxide’s Contribution to the Durability of Paint Films.” Prog. Org. Coat., 15 249–260 (1987)

    Article  CAS  Google Scholar 

  12. Fujishima, A, Zhang, X, Tryk, D, “TiO2 Photocatalysis and Related Surface Phenomena.” Surf. Sci. Rep., 63 515–582 (2008)

    Article  CAS  Google Scholar 

  13. Górska, P, Zaleska, A, Kowalska, E, Klimczuk, T, Sobczak, J, Skwarek, E, Janusz, W, Hupka, J, “TiO2 Photoactivity in Vis and UV Light: The Influence of Temperature and Surface Properties.” Appl. Catal., B, 84 440–447 (2008)

    Article  Google Scholar 

  14. Damchan, J, Sikong, L, Kooptarnond, K, Niyomwas, S, “Contact Angle of Glass Substrate with TiO2/SiO2 Thin Film.” J. Nat. Sci., 7 (1) 19–23 (2008)

    Article  Google Scholar 

  15. Zhou, M, Yu, J, Cheng, B, “Effects of Fe-doping on the Photocatalytic Activity of Mesoporous TiO2 Powders Prepared by an Ultrasonic Method.” J. Hazard. Mater., 137 1838–1847 (2006)

    Article  CAS  Google Scholar 

  16. Vohra, M, Kim, S, Choi, W, “Effects of Surface Fluorination of TiO2 on the Photocatalytic Degradation of Tetramethylammonium.” J. Photochem. Photobiol., A, 160 55–60 (2003)

    Article  CAS  Google Scholar 

  17. Yang, S, Chen, Y, Zheng, J, Cui, Y, “Enhanced Photocatalytic Activity of TiO2 by Surface Fluorination in Degradation of Organic Cationic Compound.” J. Environ. Sci. (China), 19 (1) 86 (2007)

    Article  CAS  Google Scholar 

  18. Sikong, L, Kongreong, B, Kantachote, D, Sutthisripok, W, “Photocatalytic Activity and Antibacterial Behavior of Fe3+-Doped TiO2/SnO2 Nanoparticles.” Energy Res. J., 1 120–125 (2010)

    Article  Google Scholar 

  19. El-Toni, A, Yin, S, Sato, T, “Control of Silica Shell Thickness and Microporosity of Titania–Silica Core–Shell Type Nanoparticles to Depress the Photocatalytic Activity of Titania.” J. Colloid Interface Sci., 300 123–130 (2006)

    Article  CAS  Google Scholar 

  20. Siddiquey, I, Furusawa, T, Sato, M, Honda, K, Suzuki, N, “Control of the Photocatalytic Activity of TiO2 Nanoparticles by Silica Coating with Polydiethoxysiloxane.” Dyes Pigment, 76 754–759 (2008)

    Article  CAS  Google Scholar 

  21. Tada, H, Kokubu, A, Iwasaki, M, Ito, S, “Deactivation of the TiO2 Photocatalyst by Coupling with WO3 and the Electrochemically Assisted High Photocatalytic Activity of WO3.” Langmuir, 20 4665–4670 (2004)

    Article  CAS  Google Scholar 

  22. Libanori, R, Giraldi, T, Longo, E, Leite, E, Ribeiro, C, “Effect of TiO2 Surface Modification in Rhodamine B Photodegradation.” J. Sol-Gel Sci. Technol., 49 95–100 (2009)

    Article  CAS  Google Scholar 

  23. Nakajima, A, Hashimoto, K, Watanabe, T, Takai, K, Yamauchi, G, Fujishima, A, “Transparent Superhydrophobic Thin Films with Self-Cleaning Properties.” Langmuir, 16 7044–7047 (2000)

    Article  CAS  Google Scholar 

  24. Niegisch, N, Akarsu, M, Csögör, Z, Ehses, M, Schmidt, H, “TiO2 Nanoparticle Coatings for Self-Cleaning and Antimicrobial Application.” Proceedings of Hygienic Coatings, Paint Research Association, Brussels, Belgium, paper 20, 2002

  25. Yamauchi, G, Riko, Y, Yasuno, Y, Shimizu, T, Funakoshi, N, “Nanostructured Titanium Dioxide Films for Self-Cleaning and Self-Decontaminating Surfaces.” Nano and Hybrid Coatings, Paint Research Association, Manchester, UK, paper 20, 2005

  26. Allen, N, Edge, M, Ortega, A, Liauw, C, Stratton, J, McIntyre, R, “Behavior of Nanoparticle (Ultrafine) Titanium Dioxide Pigments and Stabilisers on the Photooxidative Stability of Water Based Acrylic and Isocyanate Based Acrylic Coatings.” Polym. Degrad. Stab., 78 467–478 (2002)

    Article  CAS  Google Scholar 

  27. Allen, N, Edge, M, Ortega, A, Sandoval, G, Liauw, C, Verran, J, Stratton, J, McIntyre, R, “Degradation and Stabilisation of Polymers and Coatings: Nano Versus Pigmentary Titania Particles.” Polym. Degrad. Stab., 85 927–946 (2004)

    Article  CAS  Google Scholar 

  28. Allen, N, Edge, M, Verran, J, Stratton, J, Maltby, J, Bygott, C, “Photocatalytic Titania Based Surfaces: Environmental Benefits.” Polym. Degrad. Stab., 93 1632–1646 (2008)

    Article  CAS  Google Scholar 

  29. Jaroenworaluck, A, Sunsaneeyametha, W, Kosachan, N, Stevens, R, “Characteristics of Silica Coated TiO2 and Its UV Absorption for Sunscreen Cosmetic Applications.” Surf. Interface Anal., 38 473–477 (2006)

    Article  CAS  Google Scholar 

  30. Bechger, L, Koenderink, AF, Villem, LV, “Emission Spectra and Lifetimes of R6G Dye on Silica-Coated Titania Powder.” Langmuir, 18 2444–2447 (2002)

    Article  CAS  Google Scholar 

  31. Sepeur, S, Nanotechnology: Technical Basics and Applications. Vincentz Network, Hannover, 2008

    Google Scholar 

  32. Somasundaran, P, Encyclopedia of Surface and Colloid Science, Vol. 4, p. 2863. Taylor & Francis Group, CRC Press, New York, Boca Raton, 2006

    Google Scholar 

  33. Barrett, E, Joyner, L, Halenda, P, “The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms.” J. Am. Chem. Soc., 73 373–380 (1951)

    Article  CAS  Google Scholar 

  34. McLaren, K, “XIII—The Development of the CIE 1976 (L* a* b*) Uniform Colour Space and Colour Difference Formula.” J. Soc. Dyers Colour., 92 338–341 (1976)

    Article  Google Scholar 

  35. Hidalgo, M, Maicu, M, Navío, J, Colón, G, “Photocatalytic Properties of Surface Modified Platinised TiO2: Effects of Particle Size and Structural Composition.” Catal. Today, 129 43–49 (2007)

    Article  CAS  Google Scholar 

  36. Dean, JA, Analytical Chemistry. McGraw-Hill, New York, 1995

    Google Scholar 

  37. Kim, J, Chang, S, Kong, S, Kim, K, Kim, J, Kim, W, “Control of Hydroxyl Group Content in Silica Particle Synthesized by the Sol-Precipitation Process.” Ceram. Int., 35 1015–1019 (2009)

    Article  CAS  Google Scholar 

  38. Li, Z, Hou, B, Xu, Y, Wu, D, Sun, Y, “Hydrothermal Synthesis, Characterization, and Photocatalytic Performance of Silica-Modified Titanium Dioxide Nanoparticles.” J. Colloid Interface Sci., 288 149–154 (2005)

    Article  CAS  Google Scholar 

  39. Julian, JM, An Infrared Spectroscopy Atlas for the Coatings Industry, 4th ed., Vol. 1. Federation of Societies for Coatings Technology, Pennsylvania, 1991

    Google Scholar 

  40. Zhao, Y, Xu, L, Wang, Y, Gao, C, Liu, D, “Preparation of Ti–Si mixed oxides by sol–gel one step hydrolysis.” Catal. Today, 93 583–588 (2004)

    Article  Google Scholar 

  41. Zeitler, VA, Brown, CA, “The Infrared Spectra of Some Ti–O–Si, Ti–O–Ti and Si–O–Si Compounds.” J. Phys. Chem., 61 1174–1177 (1957)

    Article  CAS  Google Scholar 

  42. Nakamura, M, Kobayashi, M, Kuzuya, N, Komatsu, T, Mochizuka, T, “Hydrophilic Property of SiO2/TiO2 Double Layer Films.” Thin Solid Films, 502 121–124 (2006)

    Article  CAS  Google Scholar 

  43. Condon, JB, Surface Area and Porosity Determinations by Physisorption: Measurements and Theory. Elsevier B.V., The Netherlands, 2006

    Google Scholar 

  44. Braun, JH, “Titanium Dioxide: A Review.” J. Coat. Technol., 69 (868) 59–72 (1997)

    CAS  Google Scholar 

  45. Farrokhpay, S, “A Review of Polymeric Dispersant Stabilisation of Titanium Pigment.” Adv. Colloid Interface Sci., 151 24–32 (2009)

    Article  CAS  Google Scholar 

  46. Van Hoang, V, “Molecular Dynamics Simulation of Amorphous SiO2 Nanoparticles.” J. Phys. Chem. B, 111 12649–12656 (2007)

    Article  CAS  Google Scholar 

  47. Wilhelm, P, Stephan, D, “Photodegradation of Rhodamine B in Aqueous Solution Via SiO2@TiO2 Nano-spheres.” J. Photochem. Photobiol., A, 185 19–25 (2007)

    Article  CAS  Google Scholar 

  48. Ying, M, Yao, J-N, “Comparison of Photodegradative Rate of Rhodamine B Assisted by Two Kinds of TiO2 Films.” Chemosphere, 38 2407–2414 (1999)

    Article  Google Scholar 

  49. Gustafson, KE, Dickhut, RM, “Particle/Gas Concentrations and Distributions of PAHs in the Atmosphere of Southern Chesapeake Bay.” Environ. Sci. Technol., 31 140–147 (1997)

    Article  CAS  Google Scholar 

  50. Mirabedini, A, Mirabedini, S, Babalou, A, Pazokifard, S, “Synthesis, Characterization and Enhanced Photocatalytic Activity of TiO2/SiO2 Nanocomposite in an Aqueous Solution and Acrylic-Based Coatings.” Prog. Org. Coat., 72 (3) 453–460 (2011)

    Article  CAS  Google Scholar 

  51. Pazokifard, S, Mirabedini, S, Esfandeh, M, Mohseni, M, Ranjbar, Z, “Silane Grafting of TiO2 Nanoparticles: Dispersibility and Photoactivity in Aqueous Solutions.” Surf. Interface Anal., 44 41–47 (2012)

    Article  CAS  Google Scholar 

  52. Stoye, D, Freitag, W, Paints, Coatings and Solvents. Wiley-VCH Verlag Gmbh, Germany, 1998

    Book  Google Scholar 

  53. Weldon, DG, Failure Analysis of Paints and Coatings. John Wiley & Sons, London, 2009

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Iran Polymer and Petrochemical Institute (IPPI) for the financial support during the course of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Esfandeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pazokifard, S., Esfandeh, M., Mirabedini, S.M. et al. Investigating the role of surface treated titanium dioxide nanoparticles on self-cleaning behavior of an acrylic facade coating. J Coat Technol Res 10, 175–187 (2013). https://doi.org/10.1007/s11998-012-9428-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-012-9428-4

Keywords

Navigation