Skip to main content
Log in

Effect of TiO2 surface modification in Rhodamine B photodegradation

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Commercial TiO2 nanoparticles were superficially modified through polymeric resins obtained from polymerization of citrate complexes of Y3+ and Al3+ with ethylenglycol. The materials were treated at 450 °C for 4 h to obtain modified nanoparticles, which were characterized by HR-TEM, Zeta potential and surface area through N2 fisisorption. Rhodamine B photodegradation by visible light irradiation and in presence of those modified nanoparticles was compared with the same process in presence of unmodified commercial TiO2 nanoparticles. It was observed, by UV–visible spectroscopy, that the catalytic photoactivity in presence of modified nanoparticles was smaller than that observed with commercial TiO2 nanoparticles. However, the surface modifier played an important role in the photodegradation kinetic process, showing a non-linear relation between modifier amount and photodegradation rate, presenting a maximum value at 0.8% (w/w).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kraeutler B, Bard AJ (1978) J Am Chem Soc 100:5958

    Google Scholar 

  2. Frischherz H, Ollram F, Scholler F, Schmidt E (1986) Water Supply 4:167

    CAS  Google Scholar 

  3. Sundatrom DW, Klei HE, Nalette TA, Weir BA (1986) Hazard Waste Hazard Mater 3:101

    Google Scholar 

  4. Guittonneau S, de Laat J, Dore M, Duguet JP, Bonnel C (1988) Environ Technol Lett 9:1115

    Article  CAS  Google Scholar 

  5. Gurol MD, Woodman JH (1989) Hazard Ind Waste 282:21

    Google Scholar 

  6. Castrantas HM, Gibilisco RD (1990) ACS Symp Ser 422:77

    Google Scholar 

  7. Nicole I, de Laat J, Dore M, Duguet JP, Suty H (1991) Environ Technol 12:21

    Article  CAS  Google Scholar 

  8. Mills A, Le Hunte S (1997) J Photochem Photobiol A 108:1

    Article  CAS  Google Scholar 

  9. Guillard C, Disdier J, Hermann J-M, Lehaut C, Chopin T, Malato S, Blanco J (1999) Catal Today 54:217

    Article  CAS  Google Scholar 

  10. Kudo T, Nakamura Y, Ruike A (2003) Res Chem Intermed 29:631

    Article  CAS  Google Scholar 

  11. Bahnemann D (2004) Solar Energy 77:445

    Article  CAS  Google Scholar 

  12. Carp O, Huisman CL, Reller A (2004) Prog Solid State Chem 32:33

    Article  CAS  Google Scholar 

  13. Gregg BA (2005) MRS Bull 30:20

    CAS  Google Scholar 

  14. Kay A, Grätzel M (1993) J Phys Chem 97:6272

    Article  CAS  Google Scholar 

  15. Kay A, Humphry-Baker R, Grätzel M (1994) J Phys Chem 98:952

    Article  CAS  Google Scholar 

  16. Wang Q, Zhang Z, Zakeeruddin SM, Grätzel M (2008) J Phys Chem C 112:7085

    Google Scholar 

  17. Nazeeruddin NK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Bessho T, Grätzel M (2005) J Am Chem Soc 127:16835

    Article  PubMed  CAS  Google Scholar 

  18. Grätzel M (2004) J Photochem Photobiol A 164:3

    Article  CAS  Google Scholar 

  19. Grätzel M (2001) Measured under standard air mass 1.5 reporting conditions, PV calibration Laboratory of the National Energy Research Laboratory (NREL), Golden, CO, USA

  20. Nogueira AF, Longo C, De Paoli M-A (2004) Coordin Chem Rev 248:1455

    Article  CAS  Google Scholar 

  21. Kay A, Grätzel M (2002) Chem Mater 14:2930

    Article  CAS  Google Scholar 

  22. Caruso RA, Antonietti M (2001) Chem Mater 13:3272

    Article  CAS  Google Scholar 

  23. Maciel AP, Leite ER, Longo E, Varela JA (2005) Cerâmica 51:52

    Article  CAS  Google Scholar 

  24. Kakihana M, Yoshimura M (1999) B Chem Soc Jpn 72:1427

    Article  CAS  Google Scholar 

  25. Leite ER, Maciel AP, Weber IT, Lisboa PN, Longo E, Paiva-Santos CO, Andrade AVC, Paskoscimas CA, Maniette Y, Schreiner WH (2002) Adv Mater 14:905

    Article  CAS  Google Scholar 

  26. Zhao J, Wu T, Wu K, Oikawa K, Hidaka H, Serpone N (1998) Environ Sci Technol 32:2394

    Article  CAS  Google Scholar 

  27. Diebold U (2003) Surf Sci Rep 48:53

    Article  ADS  CAS  Google Scholar 

  28. Qu P, Zhao J, Shen T, Hidaka H (1998) J Mol Catal A—Chem 129:257

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial backing of the Brazilian agencies FAPESP (project no. 2005/56120-8) and CNPq (project no. 555689/2006-9) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Libanori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Libanori, R., Giraldi, T.R., Longo, E. et al. Effect of TiO2 surface modification in Rhodamine B photodegradation. J Sol-Gel Sci Technol 49, 95–100 (2009). https://doi.org/10.1007/s10971-008-1821-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1821-1

Keywords

Navigation