Skip to main content
Log in

Dual Modification of Manila Tamarind Protein Isolate by Ultrasonication and Autoclaving and Their Characterization

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Present investigation evaluated physicochemical and functional properties of Manila tamarind seed flour and seed protein isolate. Seed flour was defatted using petroleum ether (bp 40–60 °C) and used for preparation of protein isolate by alkaline extraction followed by isoelectric precipitation. Protein content in the seed flour was 32.59 ± 2.05% and 85.17 ± 0.31% in seed protein isolate. Protein isolates were treated with ultrasound (180W and 35 kHz) and autoclave (121℃ and 15psi) alone and in combination for 15 and 30 min, respectively. The autoclave treatment resulted in reduction of emulsification properties, protein solubility, and water and oil absorption capacity of the protein isolate but the same properties got enhanced with ultrasound treatment. Bulk density of samples increased with both treatments. The combination of treatments resulted in enhancement of all functional properties studied except bulk density and particle density. The values of protein solubility and water and oil absorption capacity of seed protein isolate increased from 64.11 ± 0.37% (native), 166.66 ± 2.51% (native), and 171.33 ± 1.52% (native) to 78.45 ± 1.04% (modified), 194 ± 1.73%, and 206 ± 4.00%, respectively, after autoclave and ultrasound treatments. Emulsifying activity and emulsion stability ranged between 56.47 ± 0.65% (native) to 78.19 ± 0.72% (modified) and 52.54 ± 0.80% (native) to 68.76 ± 0.81% (modified). SDS-PAGE pattern of the seed protein isolate (native and modified) revealed distinct dark bands between 50 and 90 kDa and certain fragmented bands in some of the modified samples. High molecular weight proteins were found to be stable towards the autoclave and ultrasound treatments, whereas low molecular weight proteins(~ 14–16 kDa and < 10 kDa) were slightly affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of Data or Materials

The authors declare that data will be made available on request.

Abbreviations

AAs:

Amino acids

AC:

Autoclave

BV:

Bitter vetch

DW:

Distilled water

EA:

Emulsifying activity

ES:

Emulsion stability

HIUS:

High-intensity ultrasound

HPP:

High-pressure processing

OAC:

Oil absorption capacity

PDSF:

Pithecellobium dulce Seed flour

PDSPI:

Pithecellobium dulce Seed protein isolate

PEF:

Pulsed electric field

PI:

Protein isolate

PS:

Protein solubility

SCE:

Supercritical extraction

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

US:

Ultrasound

WAC:

Water absorption capacity

References

  • Achouri, A., Nail, V., & Boye, J. I. (2012). Sesame protein isolate: Fractionation, secondary structure and functional properties. Food Research International, 46(1), 360–369. https://doi.org/10.1016/j.foodres.2012.01.001

    Article  CAS  Google Scholar 

  • Adebowale, Y. A., Schwarzenbolz, U., & Henle, T. (2011). Protein isolates from Bambara groundnut (Voandzeia Subterranean L.): Chemical characterization and functional properties. International Journal of Food Properties14(4), 758–775. https://doi.org/10.1080/10942910903420743

  • AOAC. (2006). Official Methods of Analysis (18th ed.). Association of Official Analytical Chemists.

    Google Scholar 

  • AOAC, I. K. H. (1990). Official methods of analysis Arlington. VA, USA., Association of Official Analytical Chemists Inc.

  • Bajaj, P. R., Tang, J., & Sablani, S. S. (2015). Pea protein isolates: Novel wall materials for microencapsulating flaxseed oil. Food and Bioprocess Technology, 8, 2418–2428. https://doi.org/10.1007/s11947-015-1589-6

    Article  CAS  Google Scholar 

  • Bi, X., Hemar, Y., Balaban, M. O., & Liao, X. (2015). The effect of ultrasound on particle size, color, viscosity and polyphenol oxidase activity of diluted avocado puree. Ultrasonics Sonochemistry, 27, 567–575. https://doi.org/10.1016/j.ultsonch.2015.04.011

    Article  CAS  PubMed  Google Scholar 

  • Biswas, B., & Sit, N. (2020). Effect of ultrasonication on functional properties of tamarind seed protein isolates. Journal of Food Science and Technology, 57(6), 2070–2078. https://doi.org/10.1007/s13197-020-04241-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa, L. L., Tomé, P. H. F., Jardim, F. B. B., Silva, V. P., Castilho, E. A., Damasceno, K. A., & Campagnol, P. C. B. (2018). Physicochemical and rheological characterization of pan bread made with pumpkin seed flour. International Food Research Journal25(4).

  • Du, M., Xie, J., Gong, B., Xu, X., Tang, W., Li, X., & Xie, M. (2018). Extraction, physicochemical characteristics and functional properties of Mung bean protein. Food Hydrocolloids, 76, 131–140. https://doi.org/10.1016/j.foodhyd.2017.01.003

    Article  CAS  Google Scholar 

  • Fadimu, G. J., Gill, H., Farahnaky, A., & Truong, T. (2021). Investigating the impact of ultrasound pretreatment on the physicochemical, structural, and antioxidant properties of lupin protein hydrolysates. Food and Bioprocess Technology, 14, 2004–2019. https://doi.org/10.1007/s11947-021-02700-4

    Article  CAS  Google Scholar 

  • Foh, M. B. K., Wenshui, X., Amadou, I., & Jiang, Q. (2012). Influence of pH shift on functional properties of protein isolated of tilapia (Oreochromis niloticus) muscles and of soy protein isolate. Food and Bioprocess Technology, 5, 2192–2200. https://doi.org/10.1007/s11947-010-0496-0

    Article  CAS  Google Scholar 

  • Flores-Jiménez, N. T., Ulloa, J. A., Silvas, J. E. U., Ramírez, J. C. R., Ulloa, P. R., Rosales, P. U. B., & Leyva, R. G. (2019). Effect of high-intensity ultrasound on the compositional, physicochemical, biochemical, functional and structural properties of canola (Brassica napus L.) protein isolate. Food Research International, 121, 947–956. https://doi.org/10.1016/j.foodres.2019.01.025

    Article  CAS  PubMed  Google Scholar 

  • Flores-Jiménez, N. T., Ulloa, J. A., Urías-Silvas, J. E., Ramírez-Ramírez, J. C., Bautista-Rosales, P. U., & Gutiérrez-Leyva, R. (2022). Influence of high-intensity ultrasound on physicochemical and functional properties of a guamuchilPithecellobium dulce (Roxb.) seed protein isolate. Ultrasonics Sonochemistry84, 105976. https://doi.org/10.1016/j.ultsonch.2022.105976

  • Grace, N. C., & Jeyakumar Henry, C. (2020). The physicochemical characterization of unconventional starches and flours used in Asia. Foods, 9(2), 182. https://doi.org/10.3390/foods9020182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Y., Sun-Waterhouse, D., Liu, L., He, W., Zhao, M., & Su, G. (2019). Modification of peanut protein isolate in glucose-containing solutions during simulated industrial thermal processes and gastric-duodenal sequential digestion. Food Chemistry, 295, 120–128. https://doi.org/10.1016/j.foodchem.2019.04.115

    Article  CAS  PubMed  Google Scholar 

  • Huang, L., Ding, X., Li, Y., & Ma, H. (2019). The aggregation, structures and emulsifying properties of soybean protein isolate induced by ultrasound and acid. Food Chemistry, 279, 114–119. https://doi.org/10.1016/j.foodchem.2018.11.147

    Article  CAS  Google Scholar 

  • Jambrak, A. R., Lelas, V., Mason, T. J., Krešić, G., & Badanjak, M. (2009). Physical properties of ultrasound treated soy proteins. Journal of Food Engineering, 93(4), 386–393. https://doi.org/10.1016/j.jfoodeng.2009.02.001

    Article  CAS  Google Scholar 

  • Jambrak, A. R., Mason, T. J., Lelas, V., Paniwnyk, L., & Herceg, Z. (2014). Effect of ultrasound treatment on particle size and molecular weight of whey proteins. Journal of Food Engineering, 121, 15–23. https://doi.org/10.1016/j.jfoodeng.2013.08.012

    Article  CAS  Google Scholar 

  • Jannathulla, R., Dayal, J. S., Ambasankar, K., Khan, H. I., Madhubabu, E. P., & Muralidhar, M. (2017). Effect of protein solubility of soybean meal on growth, digestibility and nutrient utilization in Penaeus vannamei. Aquaculture International, 25(5), 1693–1706. https://doi.org/10.1007/s10499-017-0147-9

    Article  CAS  Google Scholar 

  • Jitngarmkusol, S., Hongsuwankul, J., & Tananuwong, K. (2008). Chemical compositions, functional properties, and microstructure of defatted macadamia flours. Food Chemistry, 110(1), 23–30. https://doi.org/10.1016/j.foodchem.2008.01.050

    Article  CAS  PubMed  Google Scholar 

  • Joshi, M., Adhikari, B., Aldred, P., Panozzo, J. F., & Kasapis, S. (2011). Physicochemical and functional properties of lentil protein isolates prepared by different drying methods. Food Chemistry, 129(4), 1513–1522. https://doi.org/10.1016/j.foodchem.2011.05.131

    Article  CAS  Google Scholar 

  • Kadam, S. U., Tiwari, B. K., Álvarez, C., & O’Donnell, C. P. (2015). Ultrasound applications for the extraction, identification and delivery of food proteins and bioactive peptides. Trends in Food Science & Technology, 46(1), 60–67. https://doi.org/10.1016/j.tifs.2015.07.012

    Article  CAS  Google Scholar 

  • Kalegowda, P., Chauhan, A. S., & Urs, S. M. N. (2017). Opuntia dillenii (Ker-Gawl) Haw cladode mucilage: Physico-chemical, rheological and functional behaviour. Carbohydrate Polymers, 157, 1057–1064. https://doi.org/10.1016/j.carbpol.2016.10.070

    Article  CAS  PubMed  Google Scholar 

  • Karabulut, G., &Yemiş, O. (2022). Modification of hemp seed protein isolate (Cannabis sativa L.) by high-intensity ultrasound treatment. Part 1: Functional properties. Food chemistry375, 131843. https://doi.org/10.1016/j.foodchem.2021.131843

  • Kavitha, B., Hemalatha, G., Kanchana, S., Sundaram, S. P., & Sivasubramaniam, K. (2013). Physicochemical, functional, pasting properties and nutritional composition of selected black gram (Phaseolus mungo L.) varieties. Indian Journal of Science and Technology, 6(10), 5386–5394. https://doi.org/10.17485/ijst/2013/v6i10.12

  • Khadhraoui, B., Turk, M., Fabiano-Tixier, A. S., Petitcolas, E., Robinet, P., Imbert, R., & Chemat, F. (2018). Histo-cytochemistry and scanning electron microscopy for studying spatial and temporal extraction of metabolites induced by ultrasound. Towards Chain Detexturation Mechanism. Ultrasonics Sonochemistry, 42, 482–492. https://doi.org/10.1016/j.ultsonch.2017.11.029

    Article  CAS  PubMed  Google Scholar 

  • Khan, S. H., Butt, M. S., Sharif, M. K., Sameen, A., Mumtaz, S., & Sultan, M. T. (2011). Functional properties of protein isolates extracted from stabilized rice bran by microwave, dry heat, and parboiling. Journal of Agricultural and Food Chemistry, 59(6), 2416–2420. https://doi.org/10.1021/jf104177x

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Yang, W., Chung, S. Y., Chen, H., Ye, M., Teixeira, A. A., & Shriver, S. (2013). Effect of pulsed ultraviolet light and high hydrostatic pressure on the antigenicity of almond protein extracts. Food and Bioprocess Technology, 6, 431–440. https://doi.org/10.1007/s11947-011-0666-8

    Article  Google Scholar 

  • Li, R., & Xiong, Y. L. (2021). Ultrasound-induced structural modification and thermal properties of oat protein. LWT149, 111861. https://doi.org/10.1016/j.lwt.2021.111861

  • Li, W., Shu, C., Yan, S., & Shen, Q. (2010). Characteristics of sixteen mung bean cultivars and their protein isolates. International Journal of Food Science & Technology, 45(6), 1205–1211. https://doi.org/10.1111/j.1365-2621.2010.02259.x

    Article  CAS  Google Scholar 

  • Li, Q., Zheng, J., Ge, G., Zhao, M., & Sun, W. (2020a). Impact of heating treatments on physical stability and lipid-protein co-oxidation in oil-in-water emulsion prepared with soy protein isolates. Food Hydrocolloids100, 105167. https://doi.org/10.1016/j.foodhyd.2019.06.012

  • Li, Y., Cheng, Y., Zhang, Z., Wang, Y., Mintah, B. K., Dabbour, M., & Ma, H. (2020b). Modification of rapeseed protein by ultrasound-assisted pH shift treatment: Ultrasonic mode and frequency screening, changes in protein solubility and structural characteristics. Ultrasonics Sonochemistry, 69, 105240. https://doi.org/10.1016/j.ultsonch.2020.105240

  • Ling, B., Zhang, B., Li, R., & Wang, S. (2016). Nutritional quality, functional properties, bioactivity, and microstructure of defatted pistachio kernel flour. Journal of the American Oil Chemists‘ Society93(5), 689–699. https://doi.org/10.1007/s11746-016-2813-x

  • López, D. N., Ingrassia, R., Busti, P., Bonino, J., Delgado, J. F., Wagner, J., & Spelzini, D. (2018). Structural characterization of protein isolates obtained from chia (Salvia hispanica L.) seeds. LWT, 90, 396–402. https://doi.org/10.1016/j.lwt.2017.12.060

    Article  CAS  Google Scholar 

  • Mahajani, K. (2020). Physicochemical, functional properties and proximate composition of tamarind seed: Proximate composition of tamarind seed. Journal of AgriSearch, 7(1), 51–53. https://doi.org/10.21921/jas.v7i01.17636

  • Malik, M. A., Sharma, H. K., & Saini, C. S. (2017). High intensity ultrasound treatment of protein isolate extracted from dephenolized sunflower meal: Effect on physicochemical and functional properties. Ultrasonics Sonochemistry, 39, 511–519. https://doi.org/10.1016/j.ultsonch.2017.05.026

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Velasco, A., Lobato-Calleros, C., Hernández-Rodríguez, B. E., Román-Guerrero, A., Alvarez-Ramirez, J., & Vernon-Carter, E. J. (2018). High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes. Ultrasonics Sonochemistry, 44, 97–105. https://doi.org/10.1016/j.ultsonch.2018.02.007

    Article  CAS  PubMed  Google Scholar 

  • Nasrabadi, M. N., Doost, A. S., & Mezzenga, R. (2021). Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids118, 106789. https://doi.org/10.1016/j.foodhyd.2021.106789

  • Nazari, B., Mohammadifar, M. A., Shojaee-Aliabadi, S., Feizollahi, E., & Mirmoghtadaie, L. (2018). Effect of ultrasound treatments on functional properties and structure of millet protein concentrate. Ultrasonics Sonochemistry, 41, 382–388. https://doi.org/10.1016/j.ultsonch.2017.10.002

    Article  CAS  PubMed  Google Scholar 

  • Nidhina, N., & Muthukumar, S. P. (2015). Antinutritional factors and functionality of protein-rich fractions of industrial guar meal as affected by heat processing. Food Chemistry, 173, 920–926. https://doi.org/10.1016/j.foodchem.2014.10.071

    Article  CAS  PubMed  Google Scholar 

  • Nir, I., Feldman, Y., Aserin, A., & Garti, N. (1994). Surface properties and emulsification behavior of denatured soy proteins. Journal of Food Science, 59(3), 606–610. https://doi.org/10.1111/j.1365-2621.1994.tb05573.x

    Article  CAS  Google Scholar 

  • Nunes, Â. A., Favaro, S. P., Miranda, C. H., & Neves, V. A. (2017). Preparation and characterization of baru (DipteryxalataVog) nut protein isolate and comparison of its physico-chemical properties with commercial animal and plant protein isolates. Journal of the Science of Food and Agriculture, 97(1), 151–157. https://doi.org/10.1002/jsfa.7702

    Article  CAS  PubMed  Google Scholar 

  • Odjo, S., Malumba, P., Dossou, J., Janas, S., & Béra, F. (2012). Influence of drying and hydrothermal treatment of corn on the denaturation of salt-soluble proteins and color parameters. Journal of Food Engineering, 109(3), 561–570. https://doi.org/10.1016/j.jfoodeng.2011.10.023

    Article  CAS  Google Scholar 

  • Ogechukwu, C. O., & Ikechukwu, J. O. (2017). Effect of heat processing treatments on the chemical composition and functional properties of lima bean (Phaseolus lunatus) flour. American Journal of Food Sciences and Nutrition1(1), 14–24. https://doi.org/10.47672/ajfsn.261

  • Rao, G., & N., & Rao, D. G. (2009). Physico-chemical and functional properties of defatted Sterculia foetida seed flour. Journal of Food Science and Technology (mysore), 46(3), 225–227.

    Google Scholar 

  • Rao, G. N., & Rao, D. G. (2010). Chemical and functional characterization of Gum karaya (Sterculia urens L.) seed meal. Food Hydrocolloids24(5), 479–485. https://doi.org/10.1016/j.foodhyd.2009.12.003

  • Rao, G. N. (2013). Physico-chemical, mineral, amino acid composition, in vitro antioxidant activity and sorption isotherm of Pithecellobium dulce L. seed protein flour. Journal of Food and Pharmaceutical Sciences1(3). https://doi.org/10.14499/jfps

  • Rao, G. N., Rao, D. G., & Jyothirmayi, T. (2008). Physico-chemical and functional properties of defatted Pithecellobium dulce seed flour. Journal of Food Science & Technology, 45(6), 480–483.

    Google Scholar 

  • Rawat, R., & Saini, C. S. (2023). High-intensity ultrasound (HIUS) treatment of sunnhemp protein isolate (Crotalaria juncea L.): Modification of Functional, Structural, and Microstructural Properties. Food and Bioprocess Technology, 1–14. https://doi.org/10.1007/s11947-023-03011-6

  • Resendiz-Vazquez, J. A., Ulloa, J. A., Urías-Silvas, J. E., Bautista-Rosales, P. U., Ramírez-Ramírez, J. C., Rosas-Ulloa, P., & González-Torres, L. (2017). Effect of high-intensity ultrasound on the technofunctional properties and structure of jackfruit (Artocarpus heterophyllus) seed protein isolate. Ultrasonics Sonochemistry, 37, 436–444. https://doi.org/10.1016/j.ultsonch.2017.01.042

    Article  CAS  PubMed  Google Scholar 

  • Rosas Ulloa, P., Ulloa, J. A., Ulloa Rangel, B. E., & López Mártir, K. U. (2022). Protein isolate from orange (Citrus sinensis L.) seeds: Effect of high-intensity ultrasound on its physicochemical and functional properties. Food and Bioprocess Technology, 1–14. https://doi.org/10.1007/s11947-022-02956-4

  • Sanchiz, A., Pedrosa, M. M., Guillamón, E., Arribas, C., Cabellos, B., Linacero, R., & Cuadrado, C. (2019). Influence of boiling and autoclave processing on the phenolic content, antioxidant activity and functional properties of pistachio, cashew and chestnut flours. LWT, 105, 250–256. https://doi.org/10.1016/j.lwt.2019.02.035

    Article  CAS  Google Scholar 

  • Seifdavati, J., & Taghizadeh, A. (2012). Effects of moist heat treatment on ruminal nutrient degradability of and in vitro intestinal digestibility of crude protein from some of legume seeds. Journal of Food, Agriculture and Environment, 10, 390–397.

    CAS  Google Scholar 

  • Shao, D., Atungulu, G. G., Pan, Z., Yue, T., Zhang, A., & Fan, Z. (2014). Characteristics of isolation and functionality of protein from tomato pomace produced with different industrial processing methods. Food and Bioprocess Technology, 7, 532–541. https://doi.org/10.1007/s11947-013-1057-0

    Article  CAS  Google Scholar 

  • Shen, X., Shao, S., & Guo, M. (2017). Ultrasound‐induced changes in physical and functional properties of whey proteins. International Journal of Food Science & Technology52(2), 381–388. https://doi.org/10.1111/ijfs.13292

  • Shevkani, K., Singh, N., Kaur, A., & Rana, J. C. (2015). Structural and functional characterization of kidney bean and field pea protein isolates: A comparative study. Food Hydrocolloids, 43, 679–689. https://doi.org/10.1016/j.foodhyd.2014.07.024

    Article  CAS  Google Scholar 

  • Singla, M., & Sit, N. (2021). Application of ultrasound in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry, 73, 105506. https://doi.org/10.1016/j.ultsonch.2021.105506

  • Singla, M., Singh, A., & Sit, N. (2022). Effect of microwave and enzymatic pretreatment and type of solvent on kinetics of ultrasound assisted extraction of bioactive compounds from ripe papaya peel. Journal of Food Process Engineering, e14119. https://doi.org/10.1111/jfpe.14119

  • Sofi, S. A., Singh, J., Muzaffar, K., Majid, D., & Dar, B. N. (2020). Physicochemical characteristics of protein isolates from native and germinated chickpea cultivars and their noodle quality. International Journal of Gastronomy and Food Science22, 100258. https://doi.org/10.1016/j.ijgfs.2020.100258

  • Sun, X., Zhang, W., Zhang, L., Tian, S., & Chen, F. (2020). Molecular and emulsifying properties of arachin and conarachin of peanut protein isolate from ultrasound-assisted extraction. LWT, 132, 109790.

    Article  CAS  Google Scholar 

  • Sun, X., Zhang, W., Zhang, L., Tian, S., & Chen, F. (2021). Effect of ultrasound-assisted extraction on the structure and emulsifying properties of peanut protein isolate. Journal of the Science of Food and Agriculture, 101(3), 1150–1160. https://doi.org/10.1002/jsfa.10726

    Article  CAS  PubMed  Google Scholar 

  • Sun-Waterhouse, D., Zhao, M., & Waterhouse, G. I. (2014). Protein modification during ingredient preparation and food processing: Approaches to improve food processability and nutrition. Food and Bioprocess Technology7, 1853–1893.https://doi.org/10.1007/s11947-014-1326-6

  • Van de Vondel, J., Lambrecht, M. A., Housmans, J. A., Rousseau, F., Schymkowitz, J., & Delcour, J. A. (2021). Impact of hydrothermal treatment on denaturation and aggregation of water-extractable quinoa (Chenopodium quinoa Wild) protein. Food Hydrocolloids115, 106611. https://doi.org/10.1016/j.foodhyd.2021.106611

  • Vioque, J., Alaiz, M., & Girón-Calle, J. (2012). Nutritional and functional properties of Vicia faba protein isolates and related fractions. Food Chemistry, 132(1), 67–72. https://doi.org/10.1016/j.foodchem.2011.10.033

    Article  CAS  PubMed  Google Scholar 

  • Wani, I. A., Sogi, D. S., & Gill, B. S. (2015a). Physico-chemical and functional properties of native and hydrolysed protein isolates from Indian black gram (Phaseolus mungo L.) cultivars. LWT-Food Science and Technology60(2), 848–854. https://doi.org/10.1016/j.lwt.2014.10.060

  • Wani, I. A., Sogi, D. S., Shivhare, U. S., & Gill, B. S. (2015b). Physico-chemical and functional properties of native and hydrolyzed kidney bean (Phaseolus vulgaris L.) protein isolates. Food Research International, 76, 11–18. https://doi.org/10.1016/j.foodres.2014.08.027

    Article  CAS  Google Scholar 

  • WHO, J. (2007). Protein and amino acid requirements in human nutrition. World Health Organization Technical Report Series, 935, 1.

    Google Scholar 

  • Xiong, T., Xiong, W., Ge, M., Xia, J., Li, B., & Chen, Y. (2018). Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Research International109, 260–267.https://doi.org/10.1016/j.foodres.2018.04.044

  • Xu, Y., Obielodan, M., Sismour, E., Arnett, A., Alzahrani, S., & Zhang, B. (2017). Physicochemical, functional, thermal and structural properties of isolated Kabuli chickpea proteins as affected by processing approaches. International Journal of Food Science & Technology, 52(5), 1147–1154. https://doi.org/10.1111/ijfs.13400

    Article  CAS  Google Scholar 

  • Yanjun, S., Jianhang, C., Shuwen, Z., Hongjuan, L., Jing, L., Lu, L., & Jiaping, L. (2014). Effect of power ultrasound pre-treatment on the physical and functional properties of reconstituted milk protein concentrate. Journal of Food Engineering, 124, 11–18. https://doi.org/10.1016/j.jfoodeng.2013.09.013

    Article  CAS  Google Scholar 

  • Yanty, N. A. M., Lai, O. M., Osman, A., Long, K., & Ghazali, H. M. (2008). Physicochemical properties of Cucumis melo var. inodorus (honeydew melon) seed and seed oil. Journal of Food Lipids15(1), 42–55. https://doi.org/10.1111/j.1745-4522.2007.00101.x

  • Zhang, Q. T., Tu, Z. C., Xiao, H., Wang, H., Huang, X. Q., Liu, G. X., & Lin, D. R. (2014). Influence of ultrasonic treatment on the structure and emulsifying properties of peanut protein isolate. Food and Bioproducts Processing, 92(1), 30–37. https://doi.org/10.1016/j.fbp.2013.07.006

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhang, J., Sheng, W., Wang, S., & Fu, T. J. (2016). Effects of heat and high-pressure treatments on the solubility and immunoreactivity of almond proteins. Food Chemistry, 199, 856–861. https://doi.org/10.1016/j.foodchem.2015.12.063

    Article  CAS  PubMed  Google Scholar 

  • Zhong, Z., & Xiong, Y. L. (2020). Thermosonication-induced structural changes and solution properties of mung bean protein. Ultrasonics Sonochemistry62, 104908. https://doi.org/10.1016/j.ultsonch.2019.104908

  • Zhou, B., Zhang, M., Fang, Z. X., & Liu, Y. (2015). Effects of ultrasound and microwave pretreatments on the ultrafiltration desalination of salted duck egg white protein. Food and Bioproducts Processing, 96, 306–313. https://doi.org/10.1016/j.fbp.2015.09.004

    Article  CAS  Google Scholar 

  • Zhu, Z., Zhu, W., Yi, J., Liu, N., Cao, Y., Lu, J., & McClements, D. J. (2018). Effects of sonication on the physicochemical and functional properties of walnut protein isolate. Food Research International, 106, 853–861. https://doi.org/10.1016/j.foodres.2018.01.060

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Mr. Awanish Singh received a UGC-JRF fellowship from the University Grants Commission, New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

Awanish Singh: methodology; validation; formal analysis; investigation; writing—original draft. Nandan Sit: conceptualization; validation; writing—review and editing; visualization; supervision; project administration.

Corresponding author

Correspondence to Nandan Sit.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Sit, N. Dual Modification of Manila Tamarind Protein Isolate by Ultrasonication and Autoclaving and Their Characterization. Food Bioprocess Technol 16, 2947–2960 (2023). https://doi.org/10.1007/s11947-023-03100-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03100-6

Keywords

Navigation