Skip to main content
Log in

Improvement of Mechanical Properties of Frozen Japanese Radish by Combination of Low- and High-temperature Blanching Pretreatment

  • ORIGINAL RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this study, LTB + HTB (low-temperature blanching followed by high-temperature blanching) pretreatment was applied to prevent excessive softening of frozen Japanese radish. It was found that heating at 60 °C for 120 min (LTB) followed by heating for 4 min in boiling water (HTB) was a better condition than only HTB because it could maintain the firmness of the sample and inactivate the enzyme. Peroxidase (POD) activity assay showed that HTB for 4 min in boiling water (100 °C) is necessary for effective blanching with or without LTB. However, HTB treatment alone led to excessive softening after freezing. Heating at 60 °C for 15, 30, and 120 min (LTB) followed by HTB were performed, and the longer the heating time at 60 °C, the higher the breaking stress. In the LTB + HTB (60 °C120 min + 100 °C4 min) frozen-thawed sample, the degree of esterification (DE) of pectin increased compared to the fresh sample. The result suggests that LTB treatment promoted the demethylation of pectin, leading to strong cell wall adhesion, and prevented the depolymerization of pectin by subsequent HTB treatment. Although the decrease in the initial elastic modulus due to cell membrane damage and ice crystal formation is inevitable, LTB + HTB pretreatment was shown to be effective in maintaining the firmness of the sample even after freeze-thawing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data generated during the current study are available from the corresponding author on reasonable request.

References

  • Agüero, M. V., Ansorena, M. R., Roura, S. I., & del Valle, C. E. (2008). Thermal inactivation of peroxidase during blanching of butternut squash. LWT-Food Science and Technology, 41(3), 401–407.

    Article  Google Scholar 

  • Alonso, J., Canet, W., & Rodriguez, T. (1997). Thermal and calcium pretreatment affects texture, pectinesterase and pectic substances of frozen sweet cherries. Journal of Food Science, 62(3), 511–515.

    Article  CAS  Google Scholar 

  • Ando, H., Kajiwara, K., Oshita, S., & Suzuki, T. (2012). The effect of osmotic dehydrofreezing on the role of the cell membrane in carrot texture softening after freeze-thawing. Journal of Food Engineering, 108(3), 473–479.

    Article  Google Scholar 

  • Ando, Y., Hagiwara, S., & Nabetani, H. (2017). Thermal inactivation kinetics of pectin methylesterase and the impact of thermal treatment on the texture, electrical impedance characteristics and cell wall structure of Japanese radish (Raphanus sativus L.). Journal of Food Engineering, 199, 9–18.

    Article  CAS  Google Scholar 

  • Ando, Y., Hagiwara, S., Nabetani, H., Okunishi, T., & Okadome, H. (2019). Impact of ice crystal development on electrical impedance characteristics and mechanical property of green asparagus stems. Journal of Food Engineering, 256, 46–52.

    Article  CAS  Google Scholar 

  • Ando, Y., Maeda, Y., Mizutani, K., Wakatsuki, N., Hagiwara, S., & Nabetani, H. (2016). Effect of air-dehydration pretreatment before freezing on the electrical impedance characteristics and texture of carrots. Journal of Food Engineering, 169, 114–121.

    Article  CAS  Google Scholar 

  • Ando, Y., Mizutani, K., & Wakatsuki, N. (2014). Electrical impedance analysis of potato tissues during drying. Journal of Food Engineering, 121, 24–31.

    Article  Google Scholar 

  • Bahçeci, K. S., Serpen, A., Gökmen, V., & Acar, J. (2005). Study of lipoxygenase and peroxidase as indicator enzymes in green beans: Change of enzyme activity, ascorbic acid and chlorophylls during frozen storage. Journal of Food Engineering, 66(2), 187–192.

    Article  Google Scholar 

  • Barrett, D. M., & Theerakulkait, C. (1995). Quality indicators in blanched, frozen, stored vegetables. Food Technology, 49(1), 62–65.

    Google Scholar 

  • Bhat, S., Saini, C. S., Kumar, M., & Sharma, H. K. (2019). Peroxidase as indicator enzyme of blanching in bottle gourd (Lagenaria siceraria): Changes in enzyme activity, color, and morphological properties during blanching. Journal of Food Processing and Preservation, 43(8), e14017.

    Article  Google Scholar 

  • Buggenhout, S. V., Messagie, I., Van Loey, A., & Hendrickx, M. (2005). Influence of low-temperature blanching combined with high-pressure shift freezing on the texture of frozen carrots. Journal of Food Science, 70, S304–S308.

    Article  Google Scholar 

  • Celus, M., Kyomugasho, C., Van Loey, A. M., Grauwet, T., & Hendrickx, M. E. (2018). Influence of pectin structural properties on interactions with divalent cations and its associated functionalities. Comprehensive Reviews in Food Science and Food Safety, 17(6), 1576–1594.

    Article  CAS  PubMed  Google Scholar 

  • Chang, C. Y., Tsai, Y. R., & Chang, W. H. (1993). Models for the interactions between pectin molecules and other cell-wall constituents in vegetable tissues. Food Chemistry, 48(2), 145–157.

    Article  CAS  Google Scholar 

  • Chiralt, A., Martínez-Navarrete, N., Martínez-Monzö, J., Talens, P., Moraga, G., Ayala, A., & Fito, P. (2001). Changes in mechanical properties throughout osmotic processes: Cryoprotectant effect. Journal of Food Engineering, 49(2–3), 129–135.

    Article  Google Scholar 

  • Christiaens, S., Van Buggenhout, S., Houben, K., Fraeye, I., Van Loey, A. M., & Hendrickx, M. E. (2011). Towards a better understanding of the pectin structure–function relationship in broccoli during processing: Part I—macroscopic and molecular analyses. Food Research International, 44(6), 1604–1612.

    Article  CAS  Google Scholar 

  • Cruz, R. M. S., Vieira, M. C., & Silva, C. L. M. (2006). Effect of heat and thermosonication treatments on peroxidase inactivation kinetics in watercress (Nasturtium officinale). Journal of Food Engineering, 72(1), 8–15.

    Article  CAS  Google Scholar 

  • De Roeck, A., Sila, D. N., Duvetter, T., Van Loey, A., & Hendrickx, M. (2008). Effect of high pressure/high temperature processing on cell wall pectic substances in relation to firmness of carrot tissue. Food Chemistry, 107(3), 1225–1235.

    Article  Google Scholar 

  • Fuchigami, M. (1987). Relationship between pectic compositions and the softening of the texture of Japanese radish roots during cooking. Journal of Food Science, 52(5), 1317–1320.

    Article  CAS  Google Scholar 

  • Fuchigami, M., Miyazaki, K., & Hyakumoto, N. (1995). Frozen carrots texture and pectic components as affected by low-temperature-blanching and quick freezing. Journal of Food Science, 60(1), 132–136.

    Article  CAS  Google Scholar 

  • Guo, Y., Wu, B., Guo, X., Liu, D., Qiu, C., & Ma, H. (2022). Effect of thermosonication on texture degradation of carrot tissue in relation to alterations in cell membrane and cell wall structure. Food Chemistry, 393, 133335.

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi, T., Szymańska-Chargot, M., Pieczywek, P. M., Chylińska, M., Kozioł, A., Ganczarenko, D., Tanaka, F., Uchino, T., & Zdunek, A. (2017). Evaluation of pectin nanostructure by atomic force microscopy in blanched carrot. LWT, 84, 658–667.

    Article  CAS  Google Scholar 

  • Imaizumi, T., Tanaka, F., & Uchino, T. (2019). Effects of mild heating treatment on texture degradation and peroxidase inactivation of carrot under pasteurization conditions. Journal of Food Engineering, 257, 19–25.

    Article  CAS  Google Scholar 

  • James, C., Purnell, G., & James, S. J. (2014). A critical review of dehydrofreezing of fruits and vegetables. Food and Bioprocess Technology, 7(5), 1219–1234.

    Article  Google Scholar 

  • Klavons, J. A., & Bennett, R. D. (1986). Determination of methanol using alcohol oxidase and its application to methyl ester content of pectins. Journal of Agricultural and Food Chemistry, 34(4), 597–599.

    Article  CAS  Google Scholar 

  • Kyomugasho, C., Wainaina, I., Grauwet, T., Van Loey, A., & Hendrickx, M. E. (2023). Bean softening during hydrothermal processing is greatly limited by pectin solubilization rather than protein denaturation or starch gelatinization. Food Research International, 165, 112471.

    Article  CAS  PubMed  Google Scholar 

  • Lago, C. C., & Noreña, C. P. Z. (2014). Kinetic and thermodynamic of thermal inactivation of the peroxidase, polyphenoloxidase and inulinase activities during blanching of yacon (Smallanthus sonchifolius) juice. Food and Bioprocess Technology, 7(12), 3560–3568.

    Article  CAS  Google Scholar 

  • Liu, J., Bi, J., McClements, D. J., Liu, X., Yi, J., Lyu, J., Zhou, M., Verkerk, R., Dekker, M., Wu, X., & Liu, D. (2020). Impacts of thermal and non-thermal processing on structure and functionality of pectin in fruit-and vegetable-based products: A review. Carbohydrate Polymers, 250, 116890.

    Article  CAS  PubMed  Google Scholar 

  • McComb, E. A., & McCready, R. M. (1952). Colorimetric determination of pectic substances. Analytical Chemistry, 24(10), 1630–1632.

    Article  CAS  Google Scholar 

  • Neri, L., Faieta, M., Di Mattia, C., Sacchetti, G., Mastrocola, D., & Pittia, P. (2020). Antioxidant activity in frozen plant foods: Effect of cryoprotectants, freezing process and frozen storage. Foods, 9(12), 1886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng, A., & Waldron, K. W. (1997). Effect of cooking and pre-cooking on cell-wall chemistry in relation to firmness of carrot tissues. Journal of the Science of Food and Agriculture, 73(4), 503–512.

    Article  CAS  Google Scholar 

  • Ni, L., Lin, D., & Barrett, D. M. (2005). Pectin methylesterase catalyzed firming effects on low temperature blanched vegetables. Journal of Food Engineering, 70(4), 546–556.

    Article  Google Scholar 

  • Ohnishi, S., Shimiya, Y., Kumagai, H., & Miyawaki, O. (2004). Effect of freezing on electrical and rheological properties of food materials. Food Science and Technology Research, 10(4), 453–459.

    Article  Google Scholar 

  • Połata, H., Wilińska, A., Bryjak, J., & Polakovič, M. (2009). Thermal inactivation kinetics of vegetable peroxidases. Journal of Food Engineering, 91(3), 387–391.

    Article  Google Scholar 

  • Rastogi, N. K., Nguyen, L. T., Jiang, B., & Balasubramaniam, V. M. (2010). Improvement in texture of pressure-assisted thermally processed carrots by combined pretreatment using response surface methodology. Food and Bioprocess Technology, 3(5), 762–771.

    Article  Google Scholar 

  • Ribas-Agustí, A., Gouble, B., Bureau, S., Maingonnat, J. F., Audergon, J. M., & Renard, C. M. G. C. (2017). Towards the use of biochemical indicators in the raw fruit for improved texture of pasteurized apricots. Food and Bioprocess Technology, 10(4), 662–673.

    Article  Google Scholar 

  • Ridley, B. L., O’Neill, M. A., & Mohnen, D. (2001). Pectins: Structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57(6), 929–967.

    Article  CAS  PubMed  Google Scholar 

  • Santarelli, V., Neri, L., Moscetti, R., Di Mattia, C. D., Sacchetti, G., Massantini, R., & Pittia, P. (2021). Combined use of blanching and vacuum impregnation with trehalose and green tea extract as pre-treatment to improve the quality and stability of frozen carrots. Food and Bioprocess Technology, 14(7), 1326–1340.

    Article  CAS  Google Scholar 

  • Sila, D. N., Smout, C., Vu, T. S., & Hendrickx, M. E. (2004). Effects of high-pressure pretreatment and calcium soaking on the texture degradation kinetics of carrots during thermal processing. Journal of Food Science, 69(5), E205–E211.

    Article  CAS  Google Scholar 

  • Sila, D. N., Smout, C., Vu, S. T., Van Loey, A., & Hendrickx, M. (2005). Influence of pretreatment conditions on the texture and cell wall components of carrots during thermal processing. Journal of Food Science, 70(2), E85–E91.

    Article  CAS  Google Scholar 

  • Sila, D., Van Buggenhout, S., Duvetter, T., Fraeye, I., De Roeck, A., Van Loey, A., & Hendrickx, M. (2009). Pectins in processed fruits and vegetables: Part II—Structure–function relationships. Comprehensive Reviews in Food Science and Food Safety, 8(2), 86–104.

    Article  CAS  Google Scholar 

  • Silva, C. L. M., Gonçalves, E. M., & Brandão, T. R. S. (2008). Freezing of Fruits and Vegetables. In J. A. Evans (Ed.), Frozen Food Science and Technology (pp. 165–183). Blackwell Publishing Ltd.

    Chapter  Google Scholar 

  • Soysal, Ç., & Söylemez, Z. (2005). Kinetics and inactivation of carrot peroxidase by heat treatment. Journal of Food Engineering, 68(3), 349–356.

    Article  Google Scholar 

  • Vallespir, F., Rodríguez, Ó., Eim, V. S., Rosselló, C., & Simal, S. (2019). Effects of freezing treatments before convective drying on quality parameters: Vegetables with different microstructures. Journal of Food Engineering, 249, 15–24.

    Article  CAS  Google Scholar 

  • Van Buggenhout, S., Lille, M., Messagie, I., Loey, A. V., Autio, K., & Hendrickx, M. (2006). Impact of pretreatment and freezing conditions on the microstructure of frozen carrots: Quantification and relation to texture loss. European Food Research and Technology, 222(5), 543–553.

    Article  CAS  Google Scholar 

  • Yang, H., Wu, Q., Ng, L. Y., & Wang, S. (2017). Effects of vacuum impregnation with calcium lactate and pectin methylesterase on quality attributes and chelate-soluble pectin morphology of fresh-cut papayas. Food and Bioprocess Technology, 10(5), 901–913.

    Article  CAS  Google Scholar 

  • Zhang, M. I. N., & Willison, J. H. M. (1992a). Electrical impedance analysis in plant tissues: In vivo detection of freezing injury. Canadian Journal of Plant Science, 70(11), 2254–2258.

    Google Scholar 

  • Zhang, M. I. N., & Willison, J. H. M. (1992b). Electrical impedance analysis in plant tissues: The effect of freeze-thaw injury on the electrical properties of potato tuber and carrot root tissues. Canadian Journal of Plant Science, 72(2), 545–553.

    Article  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI Grant Number JP20K22606.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namiko Nishida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishida, N., Ando, Y. Improvement of Mechanical Properties of Frozen Japanese Radish by Combination of Low- and High-temperature Blanching Pretreatment. Food Bioprocess Technol 16, 2789–2799 (2023). https://doi.org/10.1007/s11947-023-03098-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03098-x

Keywords

Navigation