Skip to main content
Log in

Hydrocolloids and Partially Defatted Cake on Encapsulation of Baru Oil (Dipteryx alata Vogel): a Study on Emulsion, Particle, and Oxidative Stability

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The baru (Dipteryx alata Vogel) is a fruit of the Brazilian Cerrado, composed of a pleasant-tasting almond with a high oil content. The consumption of vegetable oils is suggested by the World Health Organization, but vegetable oils lack protection when extracted from their food matrix. Thus, the hydrocolloids Arabic gum (AG) and maltodextrin (MD) as well as the partially defatted cake (PDC), a co-product of the baru cold-pressed oil, were used to produce baru oil microparticles by spray drying. Fatty acid profile, emulsion stability, microparticle quality, and oxidative stability were evaluated. Baru oil is rich in omega-9 (47.3%). AG/MD (25% maltodextrin) showed better emulsion stability after 1 h of preparation, higher zeta potential (− 28.87 mV ± 0.026) and encapsulation efficiency (76.72% ± 0.002), and lower peroxide content after 4 weeks at 60 °C (28.38 meq/kg). The addition of PDC improved the efficiency parameters in relation to the standard formulation (AG). The replacement of 25% of AG by MD improved the emulsion and microparticles’ characteristics and better protected the baru oil against oxidation. Through a well-known technique, this study found technological use for a co-product of the extraction of baru oil and made good use of maltodextrin, a hydrocolloid with a lower relative cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aghbashlo, M., Mobli, H., Madadlou, A., & Rafiee, S. (2013). Influence of wall material and inlet drying air temperature on the microencapsulation of fish oil by spray drying. Food and Bioprocess Technology, 6(6), 1561–1569. https://doi.org/10.1007/S11947-012-0796-7/FIGURES/4

    Article  CAS  Google Scholar 

  • Annamalai, J., Aliyamveetil Abubacker, Z., Lakshmi, N. M., & Unnikrishnan, P. (2020). Microencapsulation of fish oil using fish protein hydrolysate, maltodextrin, and gum Arabic: Effect on structural and oxidative stability. Journal of Aquatic Food Product Technology, 29(3), 293–306. https://doi.org/10.1080/10498850.2020.1723765

    Article  CAS  Google Scholar 

  • Bae, E. K., & Lee, S. J. (2008). Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. Journal of Microencapsulation, 25(8), 549–560. https://doi.org/10.1080/02652040802075682

    Article  CAS  PubMed  Google Scholar 

  • Bailão, E. F. L. C., Devilla, I. A., da Conceição, E. C., & Borges, L. L. (2015). Bioactive compounds found in Brazilian cerrado fruits. International Journal of Molecular Sciences, 16(10), 23760–23783. https://doi.org/10.3390/ijms161023760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbosa-Cánovas, G. V., & Juliano, P. (2005). Physical and chemical properties of food powders. Encapsulated and Powdered Foods Edition. https://doi.org/10.1201/9781420028300-6

    Article  Google Scholar 

  • Benito-Román, O., Sanz, T., & Beltrán, S. (2020). Microencapsulation of rice bran oil using pea protein and maltodextrin mixtures as wall material. Heliyon, 6(4). https://doi.org/10.1016/j.heliyon.2020.e03615

  • Bento, A. P. N., Cominetti, C., Simões Filho, A., & Naves, M. M. V. (2014). Baru almond improves lipid profile in mildly hypercholesterolemic subjects: A randomized, controlled, crossover study. Nutrition, Metabolism and Cardiovascular Diseases, 24(12), 1330–1336. https://doi.org/10.1016/j.numecd.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  • Beristain, C. I., García, H. S., & Vernon-Carter, E. J. (2001). Spray-dried encapsulation of cardamom (Elettaria cardamomum) essential oil with mesquite (prosopis juliflora) gum. LWT - Food Science and Technology, 34(6), 398–401. https://doi.org/10.1006/fstl.2001.0779

    Article  CAS  Google Scholar 

  • Borges, T. H., Malheiro, R., Souza, A. M. de, Casal, S., & Pereira, J. A. (2015). Microwave heating induces changes in the physicochemical properties of baru (Dipteryx alata Vog.) and soybean crude oils. European Journal of Lipid Science and Technology, 117(4), 503–513. https://doi.org/10.1002/EJLT.201400351

  • Cai, Y. Z., & Corke, H. (2000). Production and properties of spray-dried Amaranthus betacyanin pigments. Journal of Food Science, 65, 1248–1252. https://doi.org/10.22323/1.166.0002

  • Campidelli, M., Carneiro, J. de D., Souza, E. C., Magalhães, M., Konig, I., Braga, M., Orlando, T., Simão, S. D., Lima, Li., & Boas, E. V. B. V. (2019). Impact of the drying process on the quality and physicochemical and mineral composition of baru almonds (Dipteryx Alata Vog.) impact of the drying process on baru almonds, 18(3), 231–243. https://doi.org/10.1080/15428052.2019.1573710

  • Carneiro, H. C. F., et al. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443–451.

    Article  CAS  Google Scholar 

  • Carneiro, H. C. F., Tonon, R. V, Grosso, C. R. F., & Hubinger, M. D. (2011). Effect of wall material combinations on the emulsion and particle characterization and flaxseed oil microencapsulation efficiency

  • Carrazza, L., & Avila, J. (2010). Manual tecnológico de aproveitamento integral do fruto do baru. http://www.ispn.org.br/arquivos/Mont_Baru0062.pdf

  • Coco, J. C., Ataide, J. A., Sake, J. A., Tambourgi, E. B., Ehrhardt, C., & Mazzola, P. G. (2021). In vitro antioxidant and wound healing properties of baru nut extract (Dipteryx alata Vog.) in pulmonary epithelial cells for therapeutic application in chronic pulmonary obstructive disease (COPD). Natural Product Research. https://doi.org/10.1080/14786419.2021.1984909/SUPPL_FILE/GNPL_A_1984909_SM9569.DOCX

  • Colman, C. B., Guerra, A., Roque, F. de O., Rosa, I. M. D., & Oliveira, P. T. S. de. (2022). Identifying priority regions and territorial planning strategies for conserving native vegetation in the Cerrado (Brazil) under different scenarios of land use changes. Science of The Total Environment, 807, 150998. https://doi.org/10.1016/J.SCITOTENV.2021.150998

  • Consoli, L., de Figueiredo Furtado, G., da Cunha, R. L., & Hubinger, M. D. (2017). High solids emulsions produced by ultrasound as a function of energy density. Ultrasonics Sonochemistry, 38, 772–782. https://doi.org/10.1016/j.ultsonch.2016.11.038

    Article  CAS  PubMed  Google Scholar 

  • da Cruz, K. S., da Silva, M. A., de Freitas, O., & Neves, V. A. (2011). Partial characterization of proteins from baru (Dipteryx alata Vog) seeds. Journal of the Science of Food and Agriculture, 91(11), 2006–2012. https://doi.org/10.1002/jsfa.4410

    Article  CAS  PubMed  Google Scholar 

  • De Oliveira Sousa, A. G., Fernandes, D. C., Alves, A. M., de Freitas, J. B., & Naves, M. M. V. (2011). Nutritional quality and protein value of exotic almonds and nut from the Brazilian Savanna compared to peanut. Food Research International, 44(7), 2319–2325. https://doi.org/10.1016/J.FOODRES.2011.02.013

    Article  Google Scholar 

  • de Pineli, L., de Aguiar, L. A., de Oliveira, G. T., Botelho, R. B. A., Ibiapina, M. do D. F. P., de Lima, H. C., & Costa, A. M. (2015). Use of baru (Brazilian Almond) waste from physical extraction of oil to produce gluten free cakes. Plant Foods for Human Nutrition, 70(1), 50–55. https://doi.org/10.1007/s11130-014-0460-7

    Article  CAS  PubMed  Google Scholar 

  • de Souza, R. G. M., Gomes, A. C., de Castro, I. A., & Mota, J. F. (2018). A baru almond–enriched diet reduces abdominal adiposity and improves high-density lipoprotein concentrations: A randomized, placebo-controlled trial. Nutrition, 55–56, 154–160. https://doi.org/10.1016/j.nut.2018.06.001

    Article  CAS  PubMed  Google Scholar 

  • Domian, E., Brynda-Kopytowska, A., & Marzec, A. (2017). Functional properties and oxidative stability of flaxseed oil microencapsulated by spray drying using legume proteins in combination with soluble fiber or trehalose. Food and Bioprocess Technology, 10(7), 1374–1386. https://doi.org/10.1007/S11947-017-1908-1/FIGURES/6

    Article  CAS  Google Scholar 

  • dos Santos, G. L., Pereira, M. G., Delgado, R. C., Magistrali, I. C., da Silva, C. G., de Oliveira, C. M. M., Larangeira, J. P. B. & da Silva, T. P. (2021). Degradation of the Brazilian Cerrado: Interactions with human disturbance and environmental variables. Forest Ecology and Management, 482, 118875. https://doi.org/10.1016/J.FORECO.2020.118875

  • Ferreira, C. D., da Conceição, E. J. L., Machado, B. A. S., Hermes, V. S., de Oliveira Rios, A., Druzian, J. I., & Nunes, I. L. (2016). Physicochemical characterization and oxidative stability of microencapsulated crude palm oil by spray drying. Food and Bioprocess Technology, 9(1), 124–136. https://doi.org/10.1007/S11947-015-1603-Z/FIGURES/4

    Article  CAS  Google Scholar 

  • Fetzer, D. L., Cruz, P. N., Hamerski, F., & Corazza, M. L. (2018). Extraction of baru (Dipteryx alata vogel) seed oil using compressed solvents technology. Journal of Supercritical Fluids, 137(March), 23–33. https://doi.org/10.1016/j.supflu.2018.03.004

    Article  CAS  Google Scholar 

  • Frascareli, E. C., Silva, V. M., Tonon, R. V. & Hubinger, M. (2012). Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food and Bioproducts Processing, 90(3), p. 413–424. https://doi.org/10.1016/j.fbp.2011.12.002

  • Fuchs, M., Turchiuli, C., Bohin, M., Cuvelier, M. E., Ordonnaud, C., Peyrat-Maillard, M. N., & Dumoulin, E. (2006). Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. Journal of Food Engineering, 75(1), 27–35. https://doi.org/10.1016/J.JFOODENG.2005.03.047

    Article  CAS  Google Scholar 

  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107–1121. https://doi.org/10.1016/j.foodres.2007.07.004

    Article  CAS  Google Scholar 

  • Gomes, M. H. G., & Kurozawa, L. E. (2020). Improvement of the functional and antioxidant properties of rice protein by enzymatic hydrolysis for the microencapsulation of linseed oil. Journal of Food Engineering, 267(September 2019), 109761. https://doi.org/10.1016/j.jfoodeng.2019.109761

  • Goula, A. M., & Adamapoulos, K. G. (2004). Spray drying of tomato pulp: Effect of feed concentation. Drying Technology, 22(10), 2309–2330.

    Article  Google Scholar 

  • Goula, A. M., Adamopoulos, K. G., & Kazakis, N. A. (2004). Influence of spray drying conditions on tomato powder properties. Drying Technology, 22(5), 1129–1151. https://doi.org/10.1081/DRT-120038584

    Article  Google Scholar 

  • Jafari, S. M., & ASSADPOOR, E., HE, Y., & BHANDARI, B. (2008). Encapsulation efficiency of food flavours and oils during spray drying. Drying Technology, 26(7), 816–835.

    Article  Google Scholar 

  • Klaypradit, W., & Huang, Y. W. (2008). Fish oil encapsulation with chitosan using ultrasonic atomizer. LWT - Food Science and Technology, 41(6), 1133–1139. https://doi.org/10.1016/j.lwt.2007.06.014

    Article  CAS  Google Scholar 

  • Koç, M., Güngör, Ö., Zungur, A., Yalçın, B., Selek, İ, Ertekin, F. K., & Ötles, S. (2015). Microencapsulation of extra virgin olive oil by spray drying: Effect of wall materials composition, process conditions, and emulsification method. Food and Bioprocess Technology, 8(2), 301–318. https://doi.org/10.1007/S11947-014-1404-9/TABLES/7

    Article  Google Scholar 

  • Lai, Q. D., Doan, N. T. T., & Nguyen, T. T. T. (2021). Influence of wall materials and homogenization pressure on microencapsulation of rice bran oil. Food and Bioprocess Technology, 14(10), 1885–1896. https://doi.org/10.1007/S11947-021-02685-0/FIGURES/10

    Article  CAS  Google Scholar 

  • Lemos, M. R. B., Siqueira, E. M. de A., Arruda, S. F., & Zambiazi, R. C. (2012). The effect of roasting on the phenolic compounds and antioxidant potential of baru nuts [Dipteryx alata Vog.]. Food Research International, 48(2), 592–597. https://doi.org/10.1016/J.FOODRES.2012.05.027

  • Lima, D. C., Alves, M. da R., Noguera, N. H., & do Nascimento, R. D. P. (2022). A review on Brazilian baru plant (Dipteryx alata Vogel): Morphology, chemical composition, health effects, and technological potential. Future Foods, 5, 100146. https://doi.org/10.1016/J.FUFO.2022.100146

  • Mahdi, A. A., Mohammed, J. K., Al-Ansi, W., Ghaleb, A. D. S., Al-Maqtari, Q. A., Ma, M., Ahmed, M. I., & Wang, H. (2020). Microencapsulation of fingered citron extract with gum Arabic, modified starch, whey protein, and maltodextrin using spray drying. International Journal of Biological Macromolecules, 152, 1125–1134. https://doi.org/10.1016/j.ijbiomac.2019.10.201

    Article  CAS  PubMed  Google Scholar 

  • Mohammed, N. K., Tan, C. P., Manap, Y. A., Muhialdin, B. J., & Hussin, A. S. M. (2020). Spray Drying for the Encapsulation of Oils—A Review. Molecules 2020, Vol. 25, Page 3873, 25(17), 3873. https://doi.org/10.3390/MOLECULES25173873

  • Murali, S., Kar, A., Patel, A. S., Kumar, J., Mohapatra, D., & Dash, S. K. (2016). Encapsulation of rice bran oil in tapioca starch-soya protein isolate complex using spray drying. Indian Journal of Agricultural Sciences, 86(8), 984–991.

    Article  Google Scholar 

  • Noguera, N. H., Lima, D. C., Filho, J. C. K. M., & Rodrigues, R. A. F. (2022). Production of rice bran oil (Oryza sativa L.) microparticles by spray drying taking advantage of the technological properties of cereal co-products, 1–13. https://doi.org/10.1080/02652048.2022.2079743

  • Parente, L., Nogueira, S., Baumann, L., Almeida, C., Maurano, L., Affonso, A. G., & Ferreira, L. (2021). Quality assessment of the PRODES Cerrado deforestation data. Remote Sensing Applications: Society and Environment, 21, 100444. https://doi.org/10.1016/J.RSASE.2020.100444

  • Paucar, O. C., Tulin, F. L., Thomazini, M., Balieiro, J. C. C., Pallone, E. M. J. A. & Favaro-Trindade, C. (2016). Production by spray chilling and characterization of solid lipid microparticles loaded with vitamin D3. Food and Bioproducts Processing, 100, 344–350. https://doi.org/10.1016/j.fbp.2016.08.006

  • Pérez-Alonso, C., Beristain, C. I., Lobato-Calleros, C., Rodríguez-Huezo, M. E., & Vernon-Carter, E. J. (2006). Thermodynamic analysis of the sorption isotherms of pure and blended carbohydrate polymers. Journal of Food Engineering, 77(4), 753–760. https://doi.org/10.1016/j.jfoodeng.2005.08.002

    Article  CAS  Google Scholar 

  • Pineli, L., Oliveira, G., Mendonça, M., Borgo, L., Freire, É., Celestino, S., Chiarello, M., & Botelho, R. (2015). Tracing chemical and sensory characteristics of baru oil during storage under nitrogen. LWT - Food Science and Technology, 62(2), 976–982. https://doi.org/10.1016/j.lwt.2015.02.015

    Article  CAS  Google Scholar 

  • Ragassi Fiorini, A. M., Barbalho, S. M., Guiguer, É. L., Oshiiwa, M., Mendes, C. G., Vieites, R. L., Chies, A. B., De Oliveira, P. B., De Souza, M. D. S. S., & Nicolau, C. C. T. (2017). Dipteryx alata vogel may improve lipid profile and atherogenic indices in wistar rats dipteryx alata and atherogenic indices. Journal of Medicinal Food, 20(11), 1121–1126. https://doi.org/10.1089/JMF.2017.0052

    Article  CAS  PubMed  Google Scholar 

  • Resende, F. M., Cimon-Morin, J., Poulin, M., Meyer, L., Joner, D. C., & Loyola, R. (2021). The importance of protected areas and Indigenous lands in securing ecosystem services and biodiversity in the Cerrado. Ecosystem Services, 49, 101282. https://doi.org/10.1016/J.ECOSER.2021.101282

  • Rojas, V. M., Marconi, L. F. da C. B., Guimarães-Inácio, A., Leimann, F. V., Tanamati, A., Gozzo, Â. M., Fuchs, R. H. B., Barreiro, M. F., Barros, L., Ferreira, I. C. F. R., Tanamati, A. A. C., & Gonçalves, O. H. (2019). Formulation of mayonnaises containing PUFAs by the addition of microencapsulated chia seeds, pumpkin seeds and baru oils. Food Chemistry, 274(September 2018), 220–227. https://doi.org/10.1016/j.foodchem.2018.09.015

  • Sá, A. G. A., Moreno, Y. M. F., & Carciofi, B. A. M. (2020). Plant proteins as high-quality nutritional source for human diet. Trends in Food Science & Technology, 97, 170–184. https://doi.org/10.1016/J.TIFS.2020.01.011

    Article  Google Scholar 

  • Sanchez-Reinoso, Z., & Gutiérrez, L. F. (2017). Effects of the emulsion composition on the physical properties and oxidative stability of Sacha Inchi (Plukenetia volubilis L.) oil microcapsules produced by spray drying. Food and Bioprocess Technology, 10(7), 1354–1366. https://doi.org/10.1007/S11947-017-1906-3/FIGURES/5

  • Shahidi, F., & Han, X. Q. (1993). Encapsulation of food ingredients : Critical review. Food Science and Nutrition, 33, 501–547.

    CAS  PubMed  Google Scholar 

  • Shamaei, S., Seiiedlou, S. S., Aghbashlo, M., Tsotsas, E., & Kharaghani, A. (2017). Microencapsulation of walnut oil by spray drying: Effects of wall material and drying conditions on physicochemical properties of microcapsules. Innovative Food Science and Emerging Technologies, 39, 101–112. https://doi.org/10.1016/j.ifset.2016.11.011

    Article  CAS  Google Scholar 

  • Shishir, M. R. I., Xie, L., Sun, C., Zheng, X., & Chen, W. (2018). Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science and Technology, 78, 34–60. https://doi.org/10.1016/J.TIFS.2018.05.018

    Article  CAS  Google Scholar 

  • Silva, M. B., Perez, V. H., Pereira, N. R., Silveira, T. C., da Silva, N. R. F., de Andrade, C. M., & Sampaio, R. M. (2018). Drying kinetic of tucum fruits (Astrocaryum aculeatum Meyer): Physicochemical and functional properties characterization. Journal of Food Science and Technology, 55(5), 1656–1666. https://doi.org/10.1007/s13197-018-3077-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva, V. M., Vieira, G. S., & Hubinger, M. D. (2014). Influence of different combinations of wall materials and homogenisation pressure on the microencapsulation of green coffee oil by spray drying. Food Research International, 61, 132–143. https://doi.org/10.1016/j.foodres.2014.01.052

    Article  CAS  Google Scholar 

  • Srinivasan, D., & Parkin, K. lL. (2019). Química de Alimentos de Fennema (5th ed.). Artmed.

  • Taheri, A., & Jafari, S. M. (2019). Gum-based nanocarriers for the protection and delivery of food bioactive compounds. Advances in Colloid and Interface Science, 269, 277–295. https://doi.org/10.1016/j.cis.2019.04.009

    Article  CAS  PubMed  Google Scholar 

  • Tan, L. H., Chan, L. W., & Heng, P. W. S. (2005). Effect of oil loading on microspheres produced by spray drying. Journal of Microencapsulation, 22(3), 253–259. https://doi.org/10.1080/02652040500100329

    Article  CAS  PubMed  Google Scholar 

  • Tolun, A., Altintas, Z., & Artik, N. (2016). Microencapsulation of grape polyphenols using maltodextrin and gum Arabic as two alternative coating materials: Development and characterization. Journal of Biotechnology, 239, 23–33. https://doi.org/10.1016/j.jbiotec.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  • Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2011). Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Research International, 44(1), 282–289. https://doi.org/10.1016/j.foodres.2010.10.018

    Article  CAS  Google Scholar 

  • Vera, R., Soares Junior, M. S., Naves, R. V., de Souza, E. R. B., Fernandes, E. P., Caliari, M., & Leandro, W. M. (2009). Características químicas de amêndoas de barueiros (Dipteryx alata Vog.) de ocorrência natural no cerrado do estado de Goiás, Brasil. Revista Brasileira de Fruticultura, 31(1), 112–118.

Download references

Acknowledgements

The authors also thank the State University of Campinas (Brazil) for infrastructure and support.

Funding

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) – DCL [grant number 131555/2019–7]; NHN [grant number 131589/2019–9], and APFG [grant number 140319/2017–4].

Author information

Authors and Affiliations

Authors

Contributions

Orientation: Rodney Alexandre Ferreira Rodrigues; supervision: Angela del Pilar Flores Granados; idea conception: Nathan Hargreaves Noguera; development: Dyana Carla Lima.

Corresponding author

Correspondence to Dyana Carla Lima.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, D.C., Noguera, N.H., del Pilar Flores Granados, A. et al. Hydrocolloids and Partially Defatted Cake on Encapsulation of Baru Oil (Dipteryx alata Vogel): a Study on Emulsion, Particle, and Oxidative Stability. Food Bioprocess Technol 16, 2598–2610 (2023). https://doi.org/10.1007/s11947-023-03087-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03087-0

Keywords

Navigation