Skip to main content
Log in

Production Strategy of Functional Oligosaccharides from Lignocellulosic Biomass Using Enzymatic Process: A Review

  • REVIEW
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass (LB) is a promising source that has the potential to revolutionize the world of bioenergy, bioproducts, and nondigestible dietary components. As a substrate, LB has proven to be particularly attractive for the production of high-value cello-oligosaccharides (COS) and xylo-oligosaccharides (XOS), which offer diverse applications in the food, biopharmaceutical, and other industries, as well as potential health benefits, including prebiotic and antidiabetic effects. However, despite these promising developments, the manufacturing of these oligosaccharides remains a challenge due to slow reactions and low yields. Therefore, this review presents various pretreatment techniques to improve enzymatic hydrolysis, as well as the possibilities of employing a multi-step process and utilizing thermostable enzymes to enhance the production of COS and XOS from LB. Additionally, this review addressed the potential for by-product recovery during the XOS and COS production and the separation of β-glucosidase enzymes using the “separation–adsorption” method in high-temperature and continuous systems for COS production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  • Aleixandre, A., Gil, J. V., Sineiro, J., & Rosell, C. M. (2022). Understanding phenolic acids inhibition of α-amylase and α-glucosidase and influence of reaction conditions. Food Chemistry, 372. https://doi.org/10.1016/j.foodchem.2021.131231

  • Amorim, C., Silvério, S. C., Prather, K. L. J., & Rodrigues, L. R. (2019). From lignocellulosic Residues to market: Production and commercial potential of xylooligosaccharides. Biotechnology Advances, 37(7), 107397. https://doi.org/10.1016/j.biotechadv.2019.05.003

  • Antczak, A., Szadkowski, J., Szadkowska, D., & Zawadzki, J. (2022). Assessment of the effectiveness of liquid hot water and steam explosion pretreatments of fast-growing poplar (Populus trichocarpa) wood. Wood Science and Technology, 56(1), 87–109. https://doi.org/10.1007/s00226-021-01350-1

    Article  CAS  Google Scholar 

  • Ávila-lara, A. I., Camberos-flores, J. N., & Mendoza-pérez, J. A. (2015). Optimization of Alkaline and Dilute Acid Pretreatment of Agave Bagasse by Response Surface Methodology, 3(September), 1–10. https://doi.org/10.3389/fbioe.2015.00146

    Article  Google Scholar 

  • Ávila, P. F., & Goldbeck, R. (2022). Fractionating process of lignocellulosic biomass for the enzymatic production of short chain cello-oligosaccharides. Industrial Crops and Products, 178(80). https://doi.org/10.1016/j.indcrop.2022.114671

  • B.Brenellia, L., Bhatiac, R., Djajadid, D. T., Thygesend, L. G., Rabeloe, S. C., Leakf, D. J., et al. (2022). Xylo-oligosaccharides, fermentable sugars, and bioenergy production from sugarcane straw using steam explosion pretreatment at pilot-scale. Bioresource Technology. https://doi.org/10.1016/j.biortech.2022.127093

  • Barbarosa, F. C., Kendrick, E., Beatriz, L., Silvano, H., Maria, G., Sarita, C., et al. (2020). Optimization of cello-oligosaccharides production by enzymatic hydrolysis of hydrothermally pretreated sugarcane straw using cellulolytic and oxidative enzymes. Biomass and Bioenergy, 141(August). https://doi.org/10.1016/j.biombioe.2020.105697

  • Baruah, J., Nath, B. K., Sharma, R., Kumar, S., Deka, R. C., Baruah, D. C., & Kalita, E. (2018). Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research, 6(DEC), 1–19. https://doi.org/10.3389/fenrg.2018.00141

  • Broekaert, W. F., Courtin, C. M., Verbeke, K., Wiele, T. V., De, V., & W., & Delcour, J. A. (2011). Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides and XOS. Critical Reviewes in Food Science and Nutrition, 51, 178–194. https://doi.org/10.1080/10408390903044768

    Article  CAS  Google Scholar 

  • Cano, M. E., García-Martin, A., Morales, P. C., Wojtusik, M., Santos, V. E., Kovensky, J., & Ladero, M. (2020). Production of oligosaccharides from agrofood wastes. Fermentation, 6(1), 1–27. https://doi.org/10.3390/fermentation6010031

    Article  CAS  Google Scholar 

  • Capetti, C. C. de M., Pellegrini, V. O. A., Espirito Santo, M. C., Cortez, A. A., Falvo, M., Curvelo, A. A. da S., et al. (2023). Enzymatic production of xylooligosaccharides from corn cobs: Assessment of two different pretreatment strategies. Carbohydrate Polymers, 299(July 2022), 120174. https://doi.org/10.1016/j.carbpol.2022.120174

  • Chen, X., Zhai, R., Li, Y., Yuan, X., Liu, Z. H., & Jin, M. (2020). Understanding the structural characteristics of water-soluble phenolic compounds from four pretreatments of corn stover and their inhibitory effects on enzymatic hydrolysis and fermentation. Biotechnology for Biofuels, 13(1), 1–13. https://doi.org/10.1186/s13068-020-01686-z

    Article  CAS  Google Scholar 

  • Chen, X., Li, H., Sun, S., Cao, X., & Sun, R. (2016). Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw. Scientific Reports, 6(September), 1–9. https://doi.org/10.1038/srep39354

    Article  CAS  Google Scholar 

  • Chen, Y., Xie, Y., Ajuwon, K. M., Zhong, R., Li, T., Chen, L., et al. (2021). Xylo-oligosaccharides, preparation and application to human and animal health: A review. Frontiers in Nutrition, 8(September), 1–10. https://doi.org/10.3389/fnut.2021.731930

    Article  CAS  Google Scholar 

  • Cheng, X., Luo, Y., Gao, Y., Li, S., Xu, C., Tang, S., et al. (2022). Surfactant-assisted alkaline pretreatment and enzymatic hydrolysis of Miscanthus sinensis for enhancing sugar recovery with a reduced enzyme loading. Frontiers in Bioengineering and Biotechnology, 10(July), 1–9. https://doi.org/10.3389/fbioe.2022.918126

    Article  Google Scholar 

  • Chu, Q., Li, X., Xu, Y., Wang, Z., Huang, J., Yu, S., & Yong, Q. (2014). Functional cello-oligosaccharides production from the corncob residues of xylo-oligosaccharides manufacture. Process Biochemistry, 49(8), 1217–1222. https://doi.org/10.1016/j.procbio.2014.05.007

    Article  CAS  Google Scholar 

  • Chu, Q., Song, K., Bu, Q., Hu, J., Li, F., Wang, J., et al. (2018). Two-stage pretreatment with alkaline sulphonation and steam treatment of Eucalyptus woody biomass to enhance its enzymatic digestibility for bioethanol production. Energy Conversion and Management, 175(September), 236–245. https://doi.org/10.1016/j.enconman.2018.08.100

    Article  CAS  Google Scholar 

  • Collins, S. R., Wellner, N., Martinez Bordonado, I., Harper, A. L., Miller, C. N., Bancroft, I., & Waldron, K. W. (2014). Variation in the chemical composition of wheat straw: The role of tissue ratio and composition. Biotechnology for Biofuels, 7(1), 1–14. https://doi.org/10.1186/s13068-014-0121-y

    Article  CAS  Google Scholar 

  • de Souza, A. P., Leite, D. C. C., Pattathil, S., Hahn, M. G., & Buckeridge, M. S. (2013). Composition and structure of sugarcane cell wall polysaccharides: Implications for second-generation bioethanol production. Bioenergy Research, 6(2), 564–579. https://doi.org/10.1007/s12155-012-9268-1

    Article  CAS  Google Scholar 

  • Desseaux, V., Stocker, P., Brouant, P., & Ajandouz, E. H. (2018). The mechanisms of alpha-amylase inhibition by flavan-3-ols and the possible impacts of drinking green tea on starch digestion. Journal of Food Science, 83(11), 2858–2865. https://doi.org/10.1111/1750-3841.14353

    Article  CAS  PubMed  Google Scholar 

  • Díaz, S., Ortega, Z., Benítez, A. N., Marrero, M. D., Carvalheiro, F., & Duarte, L. C. (2021). Oligosaccharides production by enzymatic hydrolysis of banana pseudostem pulp. Biomass Conversion and Biorefinery, (0123456789). https://doi.org/10.1007/s13399-021-02033-4

  • Dionisi, D., Anderson, J. A., Aulenta, F., & Paton, G. (2014). The potential of microbial processes for lignocellulosic biomass conversion to ethanol : A review, (October). https://doi.org/10.1002/jctb.4544

  • Feng, J., & Kong, F. (2022). Enzyme inhibitory activities of phenolic compounds in pecan and the effect on starch digestion. International Journal of Biological Macromolecules, 220, 117–123. https://doi.org/10.1016/j.ijbiomac.2022.08.045

  • Gallage, N. J., & Møller, B. L. (2015). Vanillin – bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Molecular Plant, 8(1), 40–57. https://doi.org/10.1016/j.molp.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  • Gao, H., Wang, Y., Yang, Q., Peng, H., Li, Y., Zhan, D., et al. (2021). Combined steam explosion and optimized green-liquor pretreatments are effective for complete sacchari fi cation to maximize bioethanol production by reducing lignocellulose recalcitrance in one-year-old bamboo. Renewable Energy, 175, 1069–1079. https://doi.org/10.1016/j.renene.2021.05.016

    Article  CAS  Google Scholar 

  • Giovannoni, M., Gramegna, G., Benedetti, M., & Mattei, B. (2020). Industrial use of cell wall degrading enzymes: The fine Line between production strategy and economic feasibility. Frontiers in Bioengineering and Biotechnology, 8(April), 1–20. https://doi.org/10.3389/fbioe.2020.00356

    Article  Google Scholar 

  • Gong, Z., Wang, X., Yuan, W., Wang, Y., Zhou, W., Wang, G., & Liu, Y. (2020). Fed ‑ batch enzymatic hydrolysis of alkaline organosolv ‑ pretreated corn stover facilitating high concentrations and yields of fermentable sugars for microbial lipid production. Biotechnology for Biofuels, 1–15. https://doi.org/10.1186/s13068-019-1639-9

  • González-Bautista, E., Santana-Morales, J. C., Ríos-Fránquez, F. J., Poggi-Varaldo, H. M., Ramos-Valdivia, A. C., Cristiani-Urbina, E., & Ponce-Noyola, T. (2017). Phenolic compounds inhibit cellulase and xylanase activities of Cellulomonas flavigena PR-22 during saccharification of sugarcane bagasse. Fuel, 196, 32–35. https://doi.org/10.1016/j.fuel.2017.01.080

  • Guilherme, A. A., Dantas, P. V. F., Santos, E. S., Fernandes, F. A. N., & Macedo, G. R. (2015). Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugar cane bagasse. Brazilian Journal of Chemical Engineering, 32(1), 23–33. https://doi.org/10.1590/0104-6632.20150321s00003146

    Article  Google Scholar 

  • Hao, X., Xu, F., & Zhang, J. (2022). Effect of pretreatments on production of xylooligosaccharides and monosaccharides from corncob by a two-step hydrolysis. Carbohydrate Polymers, 285(July 2021), 119217. https://doi.org/10.1016/j.carbpol.2022.119217

  • Harshvardhan, K., Suri, M., Goswami, A., & Goswami, T. (2017). Biological approach for the production of vanillin from lignocellulosic biomass (Bambusa tulda). Journal of Cleaner Production, 149, 485–490. https://doi.org/10.1016/j.jclepro.2017.02.125

    Article  CAS  Google Scholar 

  • Hidayatullah, I. M., Setiadi, T., Tri Ari Penia Kresnowati, M., & Boopathy, R. (2020). Xylanase inhibition by the derivatives of lignocellulosic material. Bioresource Technology, 300 (November 2019), 122740. https://doi.org/10.1016/j.biortech.2020.122740

  • Hijosa-Valsero, M., Paniagua-García, A. I., & Díez-Antolínez, R. (2017). Biobutanol production from apple pomace: The importance of pretreatment methods on the fermentability of lignocellulosic agro-food wastes. Applied Microbiology and Biotechnology, 101(21), 8041–8052. https://doi.org/10.1007/s00253-017-8522-z

    Article  CAS  PubMed  Google Scholar 

  • Hsieh, C. C., Cannella, D., Jørgensen, H., Felby, C., & Thygesen, L. G. (2014). Cellulase inhibition by high concentrations of monosaccharides. Journal of Agricultural and Food Chemistry, 62, 3800–3805.

    Article  CAS  PubMed  Google Scholar 

  • Hu, B., Zhu, S., Fang, S., Huo, M., Li, Y., Yu, Y., & Zhu, M. (2016). Optimization and scale-up of enzymatic hydrolysis of wood pulp for cellulosic sugar production. BioResources, 11(3), 7242–7257. https://doi.org/10.15376/biores.11.3.7242-7257

  • Hu, Z., Wang, Y., Liu, J., Li, Y., Wang, Y., Huang, J., et al. (2021). Integrated NIRS and QTL assays reveal minor mannose and galactose as contrast lignocellulose factors for biomass enzymatic saccharification in rice. Biotechnology for Biofuels, 14(1), 1–13. https://doi.org/10.1186/s13068-021-01987-x

    Article  CAS  Google Scholar 

  • Huang, C., Lai, C., Wu, X., Huang, Y., He, J., Huang, C., et al. (2017). An integrated process to produce bio-ethanol and xylooligosaccharides rich in xylobiose and xylotriose from high ash content waste wheat straw. Bioresource Technology, 241, 228–235. https://doi.org/10.1016/j.biortech.2017.05.109

    Article  CAS  PubMed  Google Scholar 

  • Husin, H., Ibrahim, M. F., Kamal Bahrin, E., & Abd-Aziz, S. (2019). Simultaneous saccharification and fermentation of sago hampas into biobutanol by Clostridium acetobutylicum ATCC 824. Energy Science and Engineering, 7(1), 66–75. https://doi.org/10.1002/ese3.226

    Article  CAS  Google Scholar 

  • Itelima, J., Ogbonna, A., Pandukur, S., Egbere, J., & Salami, A. (2013). Simultaneous saccharification and fermentation of corn cobs to bio-ethanol by co-culture of Aspergillus niger and Saccharomyces cerevisiae. International Journal of Environmental Science and Development, 4(2), 239–242. https://doi.org/10.7763/ijesd.2013.v4.343

    Article  CAS  Google Scholar 

  • Jiang, Y., Wang, X., Wu, Z., Xu, J., Hu, L., & Lin, L. (2021). Purification of xylooligosaccharides from bamboo with non-organic solvent to prepare food grade functional sugars. Results in Chemistry, 3, 100153. https://doi.org/10.1016/j.rechem.2021.100153

  • Jönsson, L. J., Alriksson, B., & Nilvebrant, N. O. (2013). Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnology for Biofuels, 6(1), 1–10. https://doi.org/10.1186/1754-6834-6-16

    Article  CAS  Google Scholar 

  • Jönsson, L. J., & Martín, C. (2016). Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 199, 103–112. https://doi.org/10.1016/j.biortech.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  • Karnaouri, A., Matsakas, L., Krikigianni, E., Rova, U., & Christakopoulos, P. (2019). Valorization of waste forest biomass toward the production of cello-oligosaccharides with potential prebiotic activity by utilizing customized enzyme cocktails. Biotechnology for Biofuels, 12(1), 1–19. https://doi.org/10.1186/s13068-019-1628-z

    Article  CAS  Google Scholar 

  • Kendrick, E. G., Bhatia, R., Barbosa, F. C., Goldbeck, R., Gallagher, J. A., & Leak, D. J. (2022). Enzymatic generation of short chain cello-oligosaccharides from Miscanthus using different pretreatments. Bioresource Technology, 358(May), 127399. https://doi.org/10.1016/j.biortech.2022.127399

  • Khat-udomkiri, N., Toejing, P., Sirilun, S., Chaiyasut, C., & Lailerd, N. (2020). Antihyperglycemic effect of rice husk derived xylooligosaccharides in high-fat diet and low-dose streptozotocin-induced type 2 diabetic rat model. Food Science and Nutrition, 8(1), 428–444. https://doi.org/10.1002/fsn3.1327

    Article  CAS  PubMed  Google Scholar 

  • Khat, N., Sivamaruthi, B. S., Sirilun, S., & Lailerd, N. (2018). Optimization of alkaline pretreatment and enzymatic hydrolysis for the extraction of xylooligosaccharide from rice husk. AMB Express, 8(115), 1–10. https://doi.org/10.1186/s13568-018-0645-9

    Article  CAS  Google Scholar 

  • Kim, D., Yu, J. H., Hong, K. S., Jung, C. D., Kim, H., Kim, J., & Myung, S. (2022). Green production of low-molecular-weight xylooligosaccharides from oil palm empty fruit bunch via integrated enzymatic polymerization and membrane separation for purification. Separation and Purification Technology, 293(December 2021), 121084. https://doi.org/10.1016/j.seppur.2022.121084

  • Kim, S. B., Lee, S. J., Lee, J. H., Jung, Y. R., Thapa, L. P., Kim, J. S., et al. (2013). Pretreatment of rice straw with combined process using dilute sulfuric acid and aqueous ammonia. Biotechnology for Biofuels, 6(1), 1–11. https://doi.org/10.1186/1754-6834-6-109

    Article  CAS  Google Scholar 

  • Kocabas, D. S., Kole, M., & Yagcı, S. (2020). Development and optimization of hemicellulose extraction bioprocess from poppy (Papaver somniferum L.) stalks assisted by instant controlled pressure drop ( DIC ) pretreatment. Biocatalysis and Agricultural Biotechnology, 29. https://doi.org/10.1016/j.bcab.2020.101793

  • Kont, R., Kurašin, M., Teugjas, H., & Väljamäe, P. (2013). Strong cellulase inhibitors from the hydrothermal pretreatment of wheat straw. Biotechnology for Biofuels, 6(1), 1–14. https://doi.org/10.1186/1754-6834-6-135

    Article  CAS  Google Scholar 

  • Lan, K., Xu, Y., Kim, H., Ham, C., Kelley, S. S., & Park, S. (2021). Techno-economic analysis of producing xylo-oligosaccharides and cellulose microfibers from lignocellulosic biomass. Bioresource Technology, 340(August 2021), 125726. https://doi.org/10.1016/j.biortech.2021.125726

  • Lee, I., & Yu, J. (2021). Design of hydrothermal and subsequent lime pretreatment for fermentable sugar and bioethanol production from acacia wood. Renewable Energy, 174, 170–177. https://doi.org/10.1016/j.renene.2021.04.064

    Article  CAS  Google Scholar 

  • Lehuedé, L., Henríquez, C., Carú, C., Córdova, A., Mendonça, R. T., & Salazar, O. (2023). Xylan extraction from hardwoods by alkaline pretreatment for xylooligosaccharide production: A detailed fractionation analysis. Carbohydrate Polymers, 302 (November 2022). https://doi.org/10.1016/j.carbpol.2022.120381

  • Li, A. L., Hou, X. D., Lin, K. P., Zhang, X., & Fu, M. H. (2018). Rice straw pretreatment using deep eutectic solvents with different constituents molar ratios: Biomass fractionation, polysaccharides enzymatic digestion and solvent reuse. Journal of Bioscience and Bioengineering, 126(3), 346–354. https://doi.org/10.1016/j.jbiosc.2018.03.011

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Chen, X., Xiong, L., Luo, M., & Chen, X. (2019). Stepwise enzymatic hydrolysis of alkaline oxidation treated sugarcane bagasse for the co-production of functional xylo-oligosaccharides and fermentable sugars. Bioresource Technology, 275(2), 345–351. https://doi.org/10.1016/j.biortech.2018.12.063

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Cheng, Y. L., Fu, N., Li, D., Adhikari, B., & Chen, X. D. (2014). Isolation and characterization of corncob cellulose fibers using microwave-assisted chemical treatments. International Journal of Food Engineering, 10(3), 427–436. https://doi.org/10.1515/ijfe-2014-0052

    Article  CAS  Google Scholar 

  • Lin, S. H., Chou, L. M., Chien, Y. W., Chang, J. S., & Lin, C. I. (2016). Prebiotic effects of xylooligosaccharides on the improvement of microbiota balance in human subjects. Gastroenterology Research and Practice, 2016. https://doi.org/10.1155/2016/5789232

  • Linares-Pasten, J., Andersson, M., & Karlsson, E. (2014). Thermostable glycoside hydrolases in biorefinery technologies. Current Biotechnology, 3(1), 26–44. https://doi.org/10.2174/22115501113026660041

    Article  CAS  Google Scholar 

  • Liu, J., Liu, Y., He, X., Teng, B., & Mcrae, J. M. (2021). Valonea tannin: Tyrosinase inhibition activity, structural elucidation and insights into the inhibition mechanism. Molecules, 26(2747), 1–18. https://doi.org/10.3390/molecules26092747

  • Lu, F., Rodriguez-Garcia, J., Van Damme, I., Westwood, N. J., Shaw, L., Robinson, J. S., et al. (2018). Valorisation strategies for cocoa pod husk and its fractions. Current Opinion in Green and Sustainable Chemistry, 14, 80–88. https://doi.org/10.1016/j.cogsc.2018.07.007

    Article  Google Scholar 

  • Maheshwari, N. V. (2018). Agro-industrial lignocellulosic waste: An alternative to unravel the future bioenergy. In A. Kumar, S. Ogita, & Y.-Y. Yau (Eds.), Biofuels: Greenhouse Gas Mitigation and Global Warming (pp. 291–305). Springer.

    Google Scholar 

  • Majewska, M. P., Miltko, R., Bełżecki, G., Kędzierska, A., & Kowalik, B. (2022). Comparison of the effect of synthetic (tannic acid) or natural (oak bark extract) hydrolysable tannins addition on fatty acid profile in the rumen of sheep.

  • Marcondes, W. F., Milagres, A. M. F., & Arantes, V. (2020). Co-production of xylo-oligosaccharides, xylose and cellulose nano fi brils from sugarcane bagasse. Journal of Biotechnology, 321(June), 35–47. https://doi.org/10.1016/j.jbiotec.2020.07.001

    Article  CAS  PubMed  Google Scholar 

  • Martín, C., Dixit, P., Momayez, F., & Jönsson, L. J. (2022). Hydrothermal pretreatment of lignocellulosic feedstocks to facilitate biochemical conversion. Frontiers in Bioengineering and Biotechnology, 10(February), 1–17. https://doi.org/10.3389/fbioe.2022.846592

    Article  Google Scholar 

  • Mathibe, B. N., Malgas, S., Radosavljevic, L., Kumar, V., Shukla, P., & Pletschke, B. I. (2020). Lignocellulosic pretreatment-mediated phenolic by-products generation and their effect on the inhibition of an endo-1,4-β-xylanase from Thermomyces lanuginosus VAPS-24. 3 Biotech, 10(8), 1–11. https://doi.org/10.1007/s13205-020-02343-w

  • Messaoudi, Y., Smichi, N., Allaf, T., Allaf, K., & Gargouri, M. (2015). Effect of instant controlled pressure drop pretreatment of lignocellulosic wastes on enzymatic saccharification and ethanol production. Industrial Crops & Products, 77, 910–919. https://doi.org/10.1016/j.indcrop.2015.09.074

    Article  CAS  Google Scholar 

  • Mhlongo, S. I., den Haan, R., Viljoen-Bloom, M., & van Zyl, W. H. (2015). Lignocellulosic hydrolysate inhibitors selectively inhibit/deactivate cellulase performance. Enzyme and Microbial Technology, 81, 16–22. https://doi.org/10.1016/j.enzmictec.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  • Moser, M., Agemans, A., & Caers, W. (2014). Production and bioactivity of oligosaccharides from chicory roots. Food Oligosaccharides: Production, Analysis and Bioactivity, 9781118426, 55–75. https://doi.org/10.1002/9781118817360.ch4

    Article  Google Scholar 

  • Mugaranja, K. P., & Kulal, A. (2020). Alpha glucosidase inhibition activity of phenolic fraction from Simarouba glauca: An in-vitro, in-silico and kinetic study. Heliyon, 6(7), e04392. https://doi.org/10.1016/j.heliyon.2020.e04392

  • Neto, F. S. P. P., Roldán, I. U. M., Galán, J. P. M., Monti, R., de Oliveira, S. C., & Masarin, F. (2020). Model-based optimization of xylooligosaccharides production by hydrothermal pretreatment of Eucalyptus by-product. Industrial Crops and Products, 154(October). https://doi.org/10.1016/j.indcrop.2020.112707

  • Nurika, I., Suhartini, S., Azizah, N., & Barker, G. C. (2020). Extraction of vanillin following bioconversion of rice straw and its optimization by response surface methodology. Molecules, 25(6031), 1–19.

    Google Scholar 

  • Panakkal, E. J., Cheenkachorn, K., Gundupalli, M. P., Kitiborwornkul, N., & Sriariyanun, M. (2021). Impact of sulfuric acid pretreatment of durian peel on the production of fermentable sugar and ethanol. Journal of the Indian Chemical Society, 98(12). https://doi.org/10.1016/j.jics.2021.100264

  • Patel, A. K., Singhania, R. R., Sim, S. J., & Pandey, A. (2019). Thermostable cellulases: current status and perspectives. Bioresource Technology, 279(November 2018), 385–392. https://doi.org/10.1016/j.biortech.2019.01.049

  • Pino, M. S., Rodríguez-Jasso, R. M., Michelin, M., Flores-Gallegos, A. C., Morales-Rodriguez, R., Teixeira, J. A., & Ruiz, H. A. (2018). Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept. Chemical Engineering Journal, 347(March), 119–136. https://doi.org/10.1016/j.cej.2018.04.057

    Article  CAS  Google Scholar 

  • Pinyo, J., Luangpituksa, P., Suphantharika, M., Hansawasdi, C., & Wongsagonsup, R. (2016). Effect of enzymatic pretreatment on the extraction yield and physicochemical properties of sago starch. Starch/staerke, 68(1–2), 47–56. https://doi.org/10.1002/star.201500185

    Article  CAS  Google Scholar 

  • Pointner, M., Kuttner, P., Obrlik, T., Jäger, A., & Kahr, H. (2014). Composition of corncobs as a substrate for fermentation of biofuels. Agronomy Research, 12(2), 391–396.

    Google Scholar 

  • Potprommanee, L., Wang, X., Han, Y., Nyobe, D., Peng, P., Huang, Q., et al. (2017). Characterization of a thermophilic cellulase from Geobacillus sp . HTA426 , an efficient cellulase-producer on alkali pretreated of lignocellulosic biomass, 1–16.

  • Qin, L., Li, W. C., Liu, L., Zhu, J. Q., Li, X., Li, B. Z., & Yuan, Y. J. (2016). Inhibition of lignin-derived phenolic compounds to cellulase. Biotechnology for Biofuels, 9(1), 1–10. https://doi.org/10.1186/s13068-016-0485-2

    Article  CAS  Google Scholar 

  • Qin, Liqin, Ma, J., Tian, H., Ma, Y., Wu, Q., Cheng, S., & Fan, G. (2022). Production of xylooligosaccharides from Jiuzao by autohydrolysis coupled with enzymatic hydrolysis using a thermostable xylanase. Foods, 11(17). https://doi.org/10.3390/foods11172663

  • Rabemanolontsoa, H., & Saka, S. (2013). Comparative study on chemical composition of various biomass species. RSC Advances, 3(12), 3946–3956. https://doi.org/10.1039/c3ra22958k

    Article  CAS  Google Scholar 

  • Rai, S. N., Birla, H., Singh, S. S., Zahra, W., Patil, R. R., Jadhav, J. P., et al. (2017). Mucuna Pruriens Protects against MPTP Intoxicated Neuroinflammation in Parkinson’s Disease through NF-κ B/pAKT Signaling Pathways, (December), 1–14. https://doi.org/10.3389/fnagi.2017.00421

    Article  CAS  Google Scholar 

  • Ríos-Covián, D., Ruas-Madiedo, P., Margolles, A., Gueimonde, M., De los Reyes-Gavilán, C. G., & Salazar, N. (2016). Intestinal short chain fatty acids and their link with diet and human health. Frontiers in Microbiology, 7(FEB), 1–9. https://doi.org/10.3389/fmicb.2016.00185

  • Santo, M. E., Rezende, C. A., Bernardinelli, O. D., Pereira, N., Curvelo, A. A. S., DeAzevedo, E. R., et al. (2018). Structural and compositional changes in sugarcane bagasse subjected to hydrothermal and organosolv pretreatments and their impacts on enzymatic hydrolysis. Industrial Crops and Products, 113(December 2017), 64–74. https://doi.org/10.1016/j.indcrop.2018.01.014

  • Saroj, P., Manasa, P., & Narasimhulu, K. (2018). Characterization of thermophilic fungi producing extracellular lignocellulolytic enzymes for lignocellulosic hydrolysis under solid ‑ state fermentation.

  • Saville, B. A., & Saville, S. (2018). Xylooligosaccharides and arabinoxylanoligosaccharides and their application as prebiotics, 5(3), 121–130.

  • Sharma, R., Kocher, G. S., Bhogal, R. S., & Oberoi, H. S. (2014). Cellulolytic and xylanolytic enzymes from thermophilic Aspergillus terreus RWY. Journal of Basic Microbiology, 54(12), 1367–1377. https://doi.org/10.1002/jobm.201400187

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S., Vaid, S., Bhat, B., Singh, S., & Bajaj, B. K. (2019). Thermostable enzymes for industrial biotechnology. In Advances in Enzyme Technology (pp. 469–495). Elsevier B.V. https://doi.org/10.1016/B978-0-444-64114-4.00017-0

  • Shrivastava, B., Jain, K. K., Kalra, A., & Kuhad, R. C. (2014). Bioprocessing of wheat straw into nutritionally rich and digested cattle feed. Scientific Reports, 4, 1–9. https://doi.org/10.1038/srep06360

    Article  CAS  Google Scholar 

  • Siccama, J. W., Oudejans, R., Zhang, L., Kabel, M. A., & Schutyser, M. A. I. (2022). Steering the formation of cellobiose and oligosaccharides during enzymatic hydrolysis of asparagus fibre. Lwt, 160(November 2021), 113273. https://doi.org/10.1016/j.lwt.2022.113273

  • da Silva, J. C., de Oliveira, R. C., da Neto, A., & S., Pimentel, V. C., & Santos, A. de A. dos. (2015). Extraction, addition and characterization of hemicelluloses from corn cobs to development of paper properties. Procedia Materials Science, 8, 793–801. https://doi.org/10.1016/j.mspro.2015.04.137

    Article  CAS  Google Scholar 

  • Solarte-toro, J. C., Romero-garcía, J. M., & Martínez-patiño, J. C. (2019). Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production. Renewable and Sustainable Energy Reviews, 107(February), 587–601. https://doi.org/10.1016/j.rser.2019.02.024

    Article  CAS  Google Scholar 

  • Sorrenti, V., Ali, S., Mancin, L., Davinelli, S., Paoli, A., & Scapagnini, G. (2020). Cocoa polyphenols and gut microbiota interplay: Bioavailability, prebiotic effect, and impact on human health. Nutrients, 12(7), 1–16. https://doi.org/10.3390/nu12071908

    Article  CAS  Google Scholar 

  • Stamogiannou, I., Van Camp, J., Smagghe, G., Van de Walle, D., Dewettinck, K., & Raes, K. (2021). Impact of phenolic compound as activators or inhibitors on the enzymatic hydrolysis of cellulose. International Journal of Biological Macromolecules, 186(June), 174–180. https://doi.org/10.1016/j.ijbiomac.2021.07.052

    Article  CAS  PubMed  Google Scholar 

  • Su, Y., Fang, L., Wang, P., Lai, C., Huang, C., Ling, Z., et al. (2021). Efficient production of xylooligosaccharides rich in xylobiose and xylotriose from poplar by hydrothermal pretreatment coupled with post-enzymatic hydrolysis. Bioresource Technology, 342(July), 125955. https://doi.org/10.1016/j.biortech.2021.125955

  • Sun, L., Warren, F. J., Netzel, G., & Gidley, M. J. (2016a). 3 or 3′-Galloyl substitution plays an important role in association of catechins and theaflavins with porcine pancreatic α-amylase: The kinetics of inhibition of α-amylase by tea polyphenols. Journal of Functional Foods, 26, 144–156. https://doi.org/10.1016/j.jff.2016.07.012

    Article  CAS  Google Scholar 

  • Sun, S., Chen, W., Tang, J., Wang, B., Cao, X., Sun, S., & Sun, R. C. (2016b). Synergetic effect of dilute acid and alkali treatments on fractional application of rice straw. Biotechnology for Biofuels, 9(1), 1–13. https://doi.org/10.1186/s13068-016-0632-9

    Article  CAS  Google Scholar 

  • Takagi, R., Sasaki, K., Sasaki, D., Fukuda, I., Tanaka, K., Yoshida, K., et al. (2016). A single-batch fermentation system to simulate human colonic microbiota for high-throughput evaluation of prebiotics. PLoS ONE, 11(8), 1–16. https://doi.org/10.1371/journal.pone.0160533

    Article  CAS  Google Scholar 

  • Tan, Jian, McKenzie, C., Potamitis, M., Thorburn, A. N., Mackay, C. R., & Macia, L. (2014). The role of short-chain fatty acids in health and disease. Advances in Immunology (1st ed., Vol. 121). Elsevier Inc. https://doi.org/10.1016/B978-0-12-800100-4.00003-9

  • Tan, J., Li, Y., Tan, X., Wu, H., Li, H., & Yang, S. (2021). Advances in pretreatment of straw biomass for sugar production. Frontiers in Chemistry, 9(June), 1–28. https://doi.org/10.3389/fchem.2021.696030

    Article  CAS  Google Scholar 

  • Thangavelu, S. K., Saleh, A., & Nasir, F. (2014). Bioethanol production from sago pith waste using microwave hydrothermal hydrolysis accelerated by carbon dioxide. Applied Energy, 128, 277–283. https://doi.org/10.1016/j.apenergy.2014.04.076

    Article  CAS  Google Scholar 

  • Thite, V. S., & Nerurkar, A. S. (2019). Valorization of sugarcane bagasse by chemical pretreatment and enzyme mediated deconstruction. Scientific Reports, 9(1), 1–14. https://doi.org/10.1038/s41598-019-52347-7

    Article  CAS  Google Scholar 

  • Vasconcellos, V. M., Tardioli, P. W., Giordano, R. L. C., & Farinas, C. S. (2015). Production efficiency versus thermostability of (hemi)cellulolytic enzymatic cocktails from different cultivation systems. Process Biochemistry, 50(11), 1701–1709. https://doi.org/10.1016/j.procbio.2015.07.011

    Article  CAS  Google Scholar 

  • Wang, S., Nie, S., & Zhu, F. (2016). Chemical constituents and health effects of sweet potato. Food Research International, 89, 90–116. https://doi.org/10.1016/j.foodres.2016.08.032

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Yang, Y., Qu, Y., & Zhang, J. (2021a). Selective removal of lignin with sodium chlorite to improve the quality and antioxidant activity of xylo-oligosaccharides from lignocellulosic biomass. Bioresource Technology, 337(June), 125506. https://doi.org/10.1016/j.biortech.2021.125506

  • Wang, Z. K., Huang, C., Zhong, J. L., Wang, Y., Tang, L., Li, B., et al. (2021b). Valorization of Chinese hickory shell as novel sources for the efficient production of xylooligosaccharides. Biotechnology for Biofuels, 14(226), 1–13. https://doi.org/10.1186/s13068-021-02076-9

    Article  CAS  Google Scholar 

  • Wijaya, H., Sasaki, K., Kahar, P., Rahmani, N., Hermiati, E., Yopi, Y., et al. (2020). High enzymatic recovery and purification of xylooligosaccharides from empty fruit bunch via nanofiltration. Processes, 8(5), 1–9. https://doi.org/10.3390/PR8050619

    Article  Google Scholar 

  • Xiong, B., Ma, S., Chen, B., Feng, Y., Peng, Z., Tang, X., et al. (2023). Formic acid-facilitated hydrothermal pretreatment of raw biomass for co-producing xylo-oligosaccharides, glucose, and lignin. Industrial Crops and Products, 193(December 2022), 116195. https://doi.org/10.1016/j.indcrop.2022.116195

  • Yang, J., Summanen, P. H., Henning, S. M., Hsu, M., Lam, H., Huang, J., et al. (2015a). Xylooligosaccharide supplementation alters gut bacteria in both healthy and prediabetic adults: A pilot study. Frontiers in Physiology, 6(Aug), 1–11. https://doi.org/10.3389/fphys.2015.00216

  • Yang, M., Zhang, J., Kuittinen, S., Vepsäläinen, J., Soininen, P., Keinänen, M., & Pappinen, A. (2015b). Enhanced sugar production from pretreated barley straw by additive xylanase and surfactants in enzymatic hydrolysis for acetone-butanol-ethanol fermentation. Bioresource Technology, 189, 131–137. https://doi.org/10.1016/j.biortech.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  • Yuansah, S. C. (2019). Potensi Pembuatan Gula Non-Digestible Dari Selulosa dan Hemiselulosa Menggunakan Hidrolisis Enzimatis. Carnea Journal, 2(2), 69–74. https://doi.org/10.20956/canrea.v2i2.116

  • Yuansah, S. C., Darmawan, Fitriana, N., & Laga, A. (2019). Pengaruh Pretreatment Jerami Padi Pada Produksi Enzim Termostabil Menggunakan Isolat Bakteri Termofilik (The effect of rice straw pretreatment on thermostable enzyme production using thermophilic bacteria isolate). Canrea Journal, 2(1), 13–18. https://doi.org/10.20956/canrea.v2i1.175

  • Zainudin, M. H. M., Mustapha, N. A., Hassan, M. A., Bahrin, E. K., Tokura, M., Yasueda, H., & Shirai, Y. (2019). A highly thermostable crude endoglucanase produced by a newly isolated Thermobifida fusca strain UPMC 901. Nature Research, 9(13526), 1–8. https://doi.org/10.1038/s41598-019-50126-y

    Article  CAS  Google Scholar 

  • Zhang, F., Lan, W., Li, Z., Zhang, A., Tang, B., Wang, H., et al. (2021). Co-production of functional xylo-oligosaccharides and fermentable sugars from corn stover through fast and facile ball mill-assisted alkaline peroxide pretreatment. Bioresource Technology, 337(May), 125327. https://doi.org/10.1016/j.biortech.2021.125327

  • Zhang, F., Lan, W., Zhang, A., & Liu, C. (2022). Green approach to produce xylo-oligosaccharides and glucose by mechanical-hydrothermal pretreatment. Bioresource Technology, 344(PB), 126298. https://doi.org/10.1016/j.biortech.2021.126298

  • Zhao, L., Sun, Z., Zhang, C., Nan, J., Ren, N., Lee, D., & Chen, C. (2022). Advances in pretreatment of lignocellulosic biomass for bioenergy production: Challenges and perspectives. Bioresource Technology, 343(October 2021), 126123. https://doi.org/10.1016/j.biortech.2021.126123

  • Zhong, C., Ukowitz, C., Domig, K. J., & Nidetzky, B. (2020). Short-chain cello-oligosaccharides: Intensification and scale-up of their enzymatic production and selective growth promotion among probiotic bacteria. Journal of Agricultural and Food Chemistry, 68(32), 8557–8567. https://doi.org/10.1021/acs.jafc.0c02660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, M., Fan, G., Xia, H., Zhang, X., & Teng, C. (2021). Ultrasound-assisted production of xylo-oligosaccharides from alkali-solubilized corncob bran using Penicillium janthinellum XAF01 acidic xylanase. Frontiers in Bioengineering and Biotechnology, 9(September), 1–9. https://doi.org/10.3389/fbioe.2021.755003

    Article  CAS  Google Scholar 

  • Zhu, J., Zhang, H., Jiao, N., Xu, G., & Xu, Y. (2022). Fractionation of poplar using hydrothermal and acid hydrotropic pretreatments for co-producing xylooligosaccharides, fermentable sugars, and lignin nanoparticles. Industrial Crops and Products. https://doi.org/10.1016/j.indcrop.2022.114853

  • Zhu, Z., Rezende, C. A., Simister, R., McQueen-Mason, S. J., Macquarrie, D. J., Polikarpov, I., & Gomez, L. D. (2016). Efficient sugar production from sugarcane bagasse by microwave assisted acid and alkali pretreatment. Biomass and Bioenergy, 93, 269–278. https://doi.org/10.1016/j.biombioe.2016.06.017

    Article  CAS  Google Scholar 

  • Ziolkowska, A., Debska, B., & Banach-szott, M. (2020). Content of phenolic compounds in meadow isolation method.

  • Zoghlami, A., & Paës, G. (2019). Lignocellulosic biomass: Understanding recalcitrance and predicting hydrolysis. Frontiers in Chemistry, 7(December). https://doi.org/10.3389/fchem.2019.00874

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to the study’s conception and design. Material preparation and data collection were performed by Sunrixon Carmando Yuansah. The first draft of the manuscript was written by Sunrixon Carmando Yuansah. Amran Laga and Pirman reviewed the article. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Sunrixon Carmando Yuansah.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuansah, S.C., Laga, A. & Pirman Production Strategy of Functional Oligosaccharides from Lignocellulosic Biomass Using Enzymatic Process: A Review. Food Bioprocess Technol 16, 2359–2381 (2023). https://doi.org/10.1007/s11947-023-03063-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03063-8

Keywords

Navigation