Skip to main content
Log in

Contribution of Hydroxypropyl Methylcellulose to the Composite Edible Films and Coatings Properties

  • RESEARCH
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effect of hydroxypropyl methylcellulose (HPMC), as the basic film-forming material, on the properties of edible films and coatings and, on the other hand, to examine the addition of cellulose nanocrystals (CNC) or/and cyclodextrin (CD) to the HPMC films in various proportions. The investigation of the HPMC-CNC-CD triple combination was executed in the context of exploring innovative material combinations and enriching the existing literature in this field. Specifically, not only the properties of the final formed films and coatings were thoroughly investigated, but also the properties of the solutions from which they were formed. Thus, the addition of both CNC and CD improved most of the properties of the HPMC-based films. Specifically, with CNC as well as CD, oxygen and water vapor permeability decreased, while transparency and heterogeneity increased. Beyond that, CNC led to more stable structures with enhanced mechanical properties, whereas CD led to improved optical properties. Finally, the minimum viscosity value required to form a homogenous HPMC-CNC-CD film was determined at 2.94 mPa·s which corresponds to proportions of 50–30-20.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

AFM:

Atomic force microscopy

ATR:

Attenuated total reflectance

C*:

Chrome

–C=O:

Amide I

CD:

Beta-cyclodextrin

CH:

Chitosan

–CH2 :

Carboxylate group

CNC:

Cellulose nanocrystals

D:

Deformation at break

F:

Maximum breaking force

FTIR:

Fourier-transform infrared spectroscopy

HN-CO:

Amide III

HPMC:

Hydroxypropyl methylcellulose

NH:

Amide II

OP:

Oxygen permeability

PMC:

Polyelectrolyte-macroion complex

SEM:

Scanning electron microscopy

TS:

Tensile strength

WI:

Whiteness index

WVP:

Water vapor permeability

XRD:

X-ray diffraction

YI:

Yellow index

ΔE:

Difference of color

ε:

Elongation

η:

Viscosity

ρ:

Density

σ:

Breaking stress

References

  • Ahmed, S., Ahmad, M., & Ikram, S. (2014). Chitosan: A natural antimicrobial agent - a review. Journal of Applicable Chemistry, 3, 493–503.

    CAS  Google Scholar 

  • Akhtar, M. J., Jacquot, M., & Desobry, S. (2013). Effect of HPMC – anthocyanin packaging color and oxygen permeability on salmon oil preservation. Food and Bioprocess Technology, 7, 93–104.

    Article  Google Scholar 

  • Arnon-Rips, H., & Poverenov, E. (2018). Improving food products’ quality and storability by using layer by layer edible coatings. Trends in Food Science & Technology, 75, 81–92.

    Article  CAS  Google Scholar 

  • Artiga-Artigas, M., Acevedo-Fani, A., & Martín-Belloso, O. (2017). Improving the shelf life of low-fat cut cheese using nanoemulsion-based edible coatings containing oregano essential oil and mandarin fiber. Food Control, 76, 1–12.

    Article  CAS  Google Scholar 

  • ASTM D3985–05. (2013). Standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor. ASTM International: West Conshohocken, PN, USA, 15, 1–7.

  • ASTM D882–10. (2010). Standard test method for tensile properties of thin plastic sheeting. ASTM International: West Conshohocken, PN, USA 1, 1–10.

  • Basch, C. Y., Jagus, R. J., & Flores, S. K. (2013). Physical and antimicrobial properties of tapioca starch-HPMC edible films incorporated with nisin and/or potassium sorbate. Food and Bioprocess Technology, 6, 2419–2428.

    Article  CAS  Google Scholar 

  • Bertuzzi, M. A., Armada, M., & Gottifredi, J. C. (2007). Physicochemical characterization of starch based films. Journal of Food Engineering, 82, 17–25.

    Article  CAS  Google Scholar 

  • Bilbao-Sainz, C., Avena-Bustillos, R. J., Wood, D. F., Williams, T. G., & McHugh, T. H. (2010). Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles. Journal of Agricultural and Food Chemistry, 58, 3753–3760.

    Article  CAS  PubMed  Google Scholar 

  • Bilbao-Sainz, C., Bras, J., Williams, T., Sénechal, T., & Orts, W. (2011). HPMC reinforced with different cellulose nano-particles. Carbohydrate Polymers, 86, 1549–1557.

    Article  CAS  Google Scholar 

  • Bizymis, A.-P., Giannou, V., & Tzia, C. (2022). Improved properties of composite edible films based on chitosan by using cellulose nanocrystals and beta-cyclodextrin. Applied Sciences, 12, 1–17.

    Article  Google Scholar 

  • Bizymis, A.-P., & Tzia, C. (2021). Edible films and coatings: Properties for the selection of the components, evolution through composites and nanomaterials, and safety issues. Critical Reviews in Food Science and Nutrition, 62, 1–16.

    Google Scholar 

  • Bourtoom, T. (2008). Review article edible films and coatings: Characteristics and properties. International Food Research Journal, 15, 237–248.

    Google Scholar 

  • Bumbudsanpharoke, N., Choi, J., & Ko, S. (2015). Applications of nanomaterials in food packaging. Journal of Nanoscienceand Nanotechnology, 15, 6357–6372.

    Article  CAS  Google Scholar 

  • Cha, D. S. U., & Chinnan, M. S. (2010). Biopolymer-based antimicrobial packaging: A review. Critical Reviews in Food Science and Nutrition, 44, 223–237.

    Article  Google Scholar 

  • Choi, W. S., Singh, S., & Lee, Y. S. (2016). Characterization of edible film containing essential oils in hydroxypropyl methylcellulose and its effect on quality attributes of “Formosa” plum (Prunus salicina L.). LWT - Food Science and Technology, 70, 213–222.

    Article  CAS  Google Scholar 

  • Deng, Z., Jung, J., Simonsen, J., Wang, Y., & Zhao, Y. (2017). Cellulose nanocrystal reinforced chitosan coatings for improving the storability of postharvest pears under both ambient and cold storages. Journal of Food Science, 82, 453–462.

    Article  CAS  PubMed  Google Scholar 

  • Ding, C., Zhang, M., & Li, G. (2015). Preparation and characterization of collagen/hydroxypropyl methylcellulose (HPMC) blend film. Carbohydrate Polymers, 119, 194–201.

    Article  CAS  PubMed  Google Scholar 

  • El-Wakil, N. A., Hassan, E. A., Abou-Zeid, R. E., & Dufresne, A. (2015). Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohydrate Polymers, 124, 337–346.

    Article  CAS  PubMed  Google Scholar 

  • Elsabee, M. Z., & Abdou, E. S. (2013). Chitosan based edible films and coatings: A review. Materials Science & Engineering C, 33, 1819–1841.

    Article  CAS  Google Scholar 

  • Fang, H., Zhou, Q., Yang, Q., Zhou, X., Cheng, S., Wei, B., Li, J., & Ji, S. (2022). Influence of combined edible coating with chitosan and tea polyphenol on the quality deterioration and health - promoting compounds in harvested broccoli. Food and Bioprocess Technology, 15, 407–420.

    Article  CAS  Google Scholar 

  • Fernández-Catalán, A., Palou, L., Taberner, V., Grimal, A., Argente-Sanchis, M., & Pérez-Gago, M. B. (2021). Hydroxypropyl methylcellulose-based edible coatings formulated with antifungal food additives to reduce alternaria black spot and maintain postharvest quality of cold-stored “Rojo Brillante” persimmons. Agronomy, 11, 1–16.

    Article  Google Scholar 

  • Garcia, M. A., Pinotti, A., Martino, M. N., & Zaritzky, N. E. (2004). Characterization of composite hydrocolloid films. Carbohydrate Polymers, 56, 339–345.

    Article  CAS  Google Scholar 

  • Ghadermazi, R., Hamdipour, S., Sadeghi, K., Ghadermazi, R., & Asl, A. K. (2019). Effect of various additives on the properties of the films and coatings derived from hydroxypropyl methylcellulose—a review. Food Science & Nutrition, 7, 3363–3377.

    Article  CAS  Google Scholar 

  • Gounga, M. E., Xu, S.-Y., & Wang, Z. (2007). Whey protein isolate-based edible films as affected by protein concentration, glycerol ratio and pullulan addition in film formation. Journal of Food Engineering, 83, 521–530.

    Article  CAS  Google Scholar 

  • Hammam, A. R. A. (2019). Technological, applications, and characteristics of edible films and coatings: A review. SN Applied Sciences, 1, 1–11.

    Article  Google Scholar 

  • Hassan, B., Ali, S., Chatha, S., Hussain, A. I., & Zia, K. M. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109, 1095–1107.

    Article  CAS  PubMed  Google Scholar 

  • He, X., Deng, H., & Hwang, H. (2018). The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis, 27, 1–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hubbe, M. A., Ferrer, A., Tyagi, P., Yin, Y., Salas, C., Pal, L., & Rojas, O. J. (2017). Nanocellulose in thin films, coatings, and plies for packaging applications: A review. Bio Resources, 12, 2143–2233.

    CAS  Google Scholar 

  • Jancikova, S., Dordevic, D., Jamroz, E., Behalova, H., & Tremlova, B. (2020). Chemical and physical characteristics of edible films, based on κ- and ι-Carrageenans with the addition of lapacho tea extract. Foods, 9, 1–15.

    Article  Google Scholar 

  • Jridi, M., Abdelhedi, O., Salem, A., Kechaou, H., Nasri, M., & Menchari, Y. (2020). Physicochemical, antioxidant and antibacterial properties of fish gelatin-based edible films enriched with orange peel pectin: Wrapping application. Food Hydrocolloids, 103, 1–10.

    Article  Google Scholar 

  • Kaur, G., Sharma, S., Mir, S. A., & Dar, B. N. (2021). Nanobiocomposite films: A “greener alternate” for food packaging. Food and Bioprocess Technology, 14, 1013–1027.

    Article  CAS  Google Scholar 

  • Khan, A., Khan, R. A., Salmieri, S., Tie, C. L., Riedl, B., Bouchard, J., Chauve, G., Tan, V., Kamal, M. R., & Lacroix, M. (2012). Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers, 90, 1601–1608.

    Article  CAS  PubMed  Google Scholar 

  • Khwaldia, K., Arab-Tehrany, E., & Desobry, S. (2010). Biopolymer coatings on paper packaging materials. Comprehensive Reviews in Food Science and Food Safety, 9, 82–91.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Mukherjee, A., & Dutta, J. (2020). Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends in Food Science & Technology, 97, 196–209.

    Article  CAS  Google Scholar 

  • Li, H., Shi, H., He, Y., Fei, X., & Peng, L. (2020). Preparation and characterization of carboxymethyl cellulose-based composite films reinforced by cellulose nanocrystals derived from pea hull waste for food packaging applications. International Journal of Biological Macromolecules, 164, 4104–4112.

    Article  CAS  PubMed  Google Scholar 

  • Marudova, M., Sotirov, S., Zhelyazkov, S., & Zsivanovits, G. (2021). Formulation and characterization of hydroxypropyl methylcellulose edible films containing grape seed oil. Macromolecular Symposia, 395, 1–4.

    Article  Google Scholar 

  • Millo, B. D., Martínez-Blay, V., Pérez-Gago, M. B., Argente-Sanchis, M., Grimal, A., Baraldi, E., & Palou, L. (2021). Antifungal hydroxypropyl methylcellulose (HPMC)-lipid composite edible coatings and modified atmosphere packaging (MAP) to reduce postharvest decay and improve storability of “Mollar de Elche” pomegranates. Coatings, 11, 1–20.

    Article  Google Scholar 

  • Mohamed, S. A. A., El-Sakhawy, M., & El-Sakhawy, M.A.-M. (2020). Polysaccharides, protein and lipid -based natural edible films in food packaging: A review. Carbohydrate Polymers, 238, 116178.

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Tarazaga, M. L., Massa, A., & Pérez-Gago, M. B. (2011). Effect of beeswax content on hydroxypropyl methylcellulose-based edible film properties and postharvest quality of coated plums (Cv. Angeleno). LWT - Food Science and Technology, 44, 2328–2334.

    Article  CAS  Google Scholar 

  • Nguyet, N. T. M., Lam, N. D., & Tuan, P. A. (2016). Cellulose nanocrystals: Synthesis, characteristics and effect on hydroxypropyl methylcellulose-based composite films and coatings. Journal of Sience and Technology, 54, 105–114.

    Google Scholar 

  • Ochoa-Velasco, C. E., Pérez-Pérez, J. C., Varillas-Torres, J. M., Navarro-Cruz, A. R., Hernández-Carranza, P., Munguía-Pérez, R., Cid-Pérez, T. S., & Avila-Sosa, R. (2021). Starch edible films/coatings added with carvacrol and thymol: In vitro and in vivo evaluation against. Foods, 10, 1–11.

    Article  Google Scholar 

  • Osorio, F. A., Molina, P., Matiacevich, S., Enrione, J., & Skurtys, O. (2011). Characteristics of hydroxy propyl methyl cellulose (HPMC) based edible film developed for blueberry coatings. Procedia Food Science, 1, 287–293.

    Article  CAS  Google Scholar 

  • Pathare, P. B., Opara, U. L., & Al-Said, F.A.-J. (2012). Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology, 6, 36–60.

    Article  Google Scholar 

  • Perone, N., Torrieri, E., Cavella, S., & Masi, P. (2013). Effect of rosemary oil and HPMC concentrations on film structure and properties. Food and Bioprocess Technology, 7, 605–609.

    Article  Google Scholar 

  • Raghav, P. K., Agarwal, N., & Saini, M. (2016). Edible coating of fruits and vegetables: A review. International Journal of Scientific Research and Modern Education (IJSRME), 1, 188–204.

    Google Scholar 

  • Reyna, L. E. A., Gastelum, Y. G. U., Díaz, B. H. C., Maruri, D. T., López, M. E. L. E., Velázquez, J. G. L., & García, M. O. V. (2022). Antifungal activity of a chitosan and mint essential oil coating on the development of colletotrichum gloeosporioides in papaya using macroscopic and microscopic analysis. Food and Bioprocess Technology, 15, 368–378.

  • Rosenbloom, R. A., & Zhao, Y. (2021). Hydroxypropyl methylcellulose or soy protein isolate-based edible, water-soluble, and antioxidant films for safflower oil packaging. Journal of Food Science, 86, 129–139.

    Article  CAS  PubMed  Google Scholar 

  • Saffarionpour, S. (2020). Nanocellulose for stabilization of pickering emulsions and delivery of nutraceuticals and its interfacial adsorption mechanism. Food and Bioprocess Technology, 13, 1292–1328.

    Article  CAS  Google Scholar 

  • Seifari, F. K., & Ahari, H. (2020). Active edible films and coatings with enhanced properties using nanoemulsion and nanocrystals. Food & Health, 3, 15–22.

    Google Scholar 

  • Simionato, I., Domingues, F. C., Nerín, C., & Silva, F. (2019). Encapsulation of cinnamon oil in cyclodextrin nanosponges and their potential use for antimicrobial food packaging. Food and Chemical Toxicology, 132, 1–9.

    Article  Google Scholar 

  • Simona, J., Dani, D., Petr, S., Marcela, N., Jakub, T., & Bohuslava, T. (2021). Edible films from carrageenan/orange essential oil/trehalose—structure, optical properties, and antimicrobial activity. Polymers, 13, 1–19.

    Article  Google Scholar 

  • Song, J., Feng, H., Wu, M., Chen, L., Xia, W., & Zhang, W. (2021). Development of a bioactive chitosan HPMC-based membrane with tea polyphenols encapsulated in β-cyclodextrin as an effective enhancement. Materials Today Communications, 27, 1–10.

    Article  Google Scholar 

  • Sothornvit, R. (2021). Relationship between solution rheology and properties of hydroxypropyl methylcellulose films. Songklanakarin Journal Science Technology, 43, 761–766.

    CAS  Google Scholar 

  • Tkaczewska, J. (2020). Peptides and protein hydrolysates as food preservatives and bioactive components of edible films and coatings - A review. Trends in Food Science & Technology, 106, 298–311.

    Article  CAS  Google Scholar 

  • Tracton, A. A. (Ed.). (2007). Coatings technology fundamentals, testing, and processing techniques (1st ed.). CRC Press Taylor & Francis Group.

    Google Scholar 

  • Tracton, A. A. (Ed.). (2006). Coatings technology handbook (3rd ed.). CRC Press Taylor & Francis Group.

    Google Scholar 

  • Uranga, J., Puertas, A. I., Etxabide, A., Dueñas, M. T., Guerrero, P., & de la Caba, K. (2019). Citric acid-incorporated fish gelatin/chitosan composite films. Food Hydrocolloids, 86, 95–103.

    Article  CAS  Google Scholar 

  • Valencia-Chamorro, S. A., Palou, L., Del Río, M. A., & Pérez-Gago, M. B. (2011). Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition, 51, 872–900.

    Article  CAS  PubMed  Google Scholar 

  • Viacava, G. E., Cenci, M. P., & Ansorena, M. R. (2022). Effect of chitosan edible coatings incorporated with free or microencapsulated thyme essential oil on quality characteristics of fresh - cut carrot slices. Food and Bioprocess Technology, 15, 768–784.

    Article  CAS  Google Scholar 

  • Vogel, A.I. (1989) Book. In G. H. Jeffery, J. Bassett, J. Mendham,  & R. C. Denney  (Eds.), Vogel’s textbook of quantitative chemical analysis (5th ed., pp. 395–396). Longman Scientific and Technical

  • Wang, H., & Roman, M. (2011). Formation and properties of chitosan-cellulose nanocrystal polyelectrolyte-macroion complexes for drug delivery applications. Biomacromolecules, 12, 1585–1593.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., Li, X., Xu, Y., Wang, A., Xu, Z., Wu, X., Li, D., Mu, C., & Ge, L. (2021). Dihydromyricetin - loaded pickering emulsions stabilized by dialdehyde cellulose nanocrystals for preparation of antioxidant gelatin–based edible films. Food and Bioprocess Technology, 14, 1648–1661.

    Article  CAS  Google Scholar 

  • Ye, Y., Zhu, M., Miao, K., Li, X., Li, D., & Mu, C. (2017). Development of antimicrobial gelatin-based edible films by incorporation of trans-anethole/β-cyclodextrin inclusion complex. Food and Bioprocess Technology, 10, 1844–1853.

    Article  CAS  Google Scholar 

  • Zambrano-Zaragoza, M. L., Gonzalez-Reza, R., Mendoza-Muñoz, N., Miranda-Linares, V., Bernal-Couoh, T. F., Mendoza-Elvira, S., & Quintanar-Guerrero, D. (2018). Nanosystems in edible coatings: A novel strategy for food preservation. International Journal of Molecular Sciences, 19, 1–24.

    Article  Google Scholar 

  • Zhang, L., Yue, L.-N., Sui, Y.-L., Zhao, Y., Ding, X., Li, Q., Zhang, C., Wu, C., Gao, C., & Qian, J.-Y. (2021). Regulating the mechanical properties and microporous structures of hydroxypropyl methylcellulose based microporous photophobic films by adjusting the l-ethyl-3-methylimidazolium acetate content. Progress in Organic Coatings, 155, 1–9.

    Article  Google Scholar 

  • Zikmanis, P., Juhņeviča-Radenkova, K., Radenkovs, V., Segliņa, D., Krasnova, I., Kolesovs, S., Orlovskis, Z., Šilaks, A., & Semjonovs, P. (2021). Microbial polymers in edible films and coatings of garden berry and grape: Current and prospective use. Food and Bioprocess Technology, 14, 1432–1445.

Download references

Funding

This research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number: 1383).

Author information

Authors and Affiliations

Authors

Contributions

Angelos-Panagiotis Bizymis was responsible for conducting the experiments in the context of his doctoral dissertation and for writing the manuscript. Prof. Tzia was responsible for the design of the experiments and editing of the manuscript and Dr. Giannou contributed in reviewing the manuscript.

Corresponding author

Correspondence to Constantina Tzia.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bizymis, AP., Giannou, V. & Tzia, C. Contribution of Hydroxypropyl Methylcellulose to the Composite Edible Films and Coatings Properties. Food Bioprocess Technol 16, 1488–1501 (2023). https://doi.org/10.1007/s11947-023-03013-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-023-03013-4

Keywords

Navigation