Skip to main content

Advertisement

Log in

Studies on Meat Alternatives with a Focus on Structuring Technologies

  • REVIEW
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Developing meat alternatives has recently become a popular topic in the food and research communities. In this review, we summarized and focused on various structuring technologies to produce meat alternatives obtained from plants, cultured cells, and edible insects. Plant-based meats were mainly produced by soybeans and wheat, and the texture of meat alternatives obtained from plant sources was improved using extrusion, shear cell, and electrospinning technologies. Cultured meats were mainly produced by stem cell technology using 3D bioprinting, microcarriers, and scaffolds to form aligned tissues. Most edible insects were not only used as alternative protein sources using heating or freeze-drying processes; they also produced oils using supercritical extraction and solvent extraction processes producing meat alternatives. This review provides information about the current research on meat alternatives to improve their structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data are available on request.

References

  • Abu-Ghazaleh, N., Chua, W. J., & Gopalan, V. (2021). Intestinal microbiota and its association with colon cancer and red/processed meat consumption. Journal of Gastroenterology and Hepatology, 36, 75–88.

    Article  CAS  PubMed  Google Scholar 

  • Acevedo, C. A., Orellana, N., Avarias, K., Ortiz, R., Benavente, D., & Prieto, P. (2018). Micropatterning technology to design an edible film for in vitro meat production. Food and Bioprocess Technology, 11, 1267–1273.

    Article  CAS  Google Scholar 

  • Allan, S. J., Ellis, M. J., & De Bank, P. A. (2021). Decellularized grass as a sustainable scaffold for skeletal muscle tissue engineering. Journal of Biomedical Materials Research Part A, 109, 2471–2482.

    Article  CAS  PubMed  Google Scholar 

  • Asgar, M. A., Fazilah, A., Huda, N., Bhat, R., & Karim, A. A. (2010). Nonmeat protein alternatives as meat extenders and meat analogs. Comprehensive Reviews in Food Science and Food Safety, 9, 513–529.

    Article  CAS  PubMed  Google Scholar 

  • Azzollini, D., Derossi, A., Fogliano, V., Lakemond, C. M. M., & Severini, C. (2018). Effects of formulation and process conditions on microstructure, texture and digestibility of extruded insect-riched snacks. Innovative Food Science & Emerging Technologies, 45, 344–353.

    Article  CAS  Google Scholar 

  • Baker, M. A., Shin, J. T., & Kim, Y. W. (2016). An exploration and investigation of edible insect consumption: The impacts of image and description on risk perceptions and purchase intent. Psychology & Marketing, 33, 94–112.

    Article  Google Scholar 

  • Bednářová, M., Borkovcová, M., Mlček, J., Rop, O., & Zeman, L. (2013). Edible insects-species suitable for entomophagy under condition of Czech Republic. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis.

  • Ben-Arye, T., Shandalov, Y., Ben-Shaul, S., Landau, S., Zagury, Y., Ianovici, I., Lavon, N., & Levenberg, S. (2020). Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nature Food, 1, 210–220.

    Article  CAS  Google Scholar 

  • Bentzinger, C. F., Wang, Y. X., & Rudnicki, M. A. (2012). Building muscle: Molecular regulation of myogenesis. Cold Spring Harbor Perspectives in Biology, 4, a008342.

    Article  PubMed  PubMed Central  Google Scholar 

  • Biferali, B., Proietti, D., Mozzetta, C., & Madaro, L. (2019). Fibro–adipogenic progenitors cross-talk in skeletal muscle: The social network. Frontiers in Physiology, 10.

  • Bodiou, V., Moutsatsou, P., & Post, M. J. (2020). Microcarriers for upscaling cultured meat production. Frontiers in Nutrition, 7.

  • Bohrer, B. M. (2019). An investigation of the formulation and nutritional composition of modern meat analogue products. Food Science and Human Wellness, 8, 320–329.

    Article  Google Scholar 

  • Bosnakovski, D., Mizuno, M., Kim, G., Takagi, S., Okumura, M., & Fujinaga, T. (2005). Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell and Tissue Research, 319, 243–253.

    Article  PubMed  Google Scholar 

  • Bryant, C., & Sanctorum, H. (2021). Alternative proteins, evolving attitudes: Comparing consumer attitudes to plant-based and cultured meat in Belgium in two consecutive years. Appetite, 161, 105161.

    Article  PubMed  Google Scholar 

  • Caporgno, M. P., Böcker, L., Müssner, C., Stirnemann, E., Haberkorn, I., Adelmann, H., Handschin, S., Windhab, E. J., & Mathys, A. (2020). Extruded meat analogues based on yellow, heterotrophically cultivated Auxenochlorella protothecoides microalgae. Innovative Food Science & Emerging Technologies, 59, 102275.

    Article  CAS  Google Scholar 

  • Cavallini, V., Hargarten, P., & Joehnke, J. (2006) Vegetable protein meat analog. In. p^pp. Google Patents.

  • Chantanuson, R., Nagamine, S., Kobayashi, T., & Nakagawa, K. (2022). Preparation of soy protein-based food gels and control of fibrous structure and rheological property by freezing. Food Structure, 32, 100258.

    Article  CAS  Google Scholar 

  • Choi, H.-W., & Ryu, G. -H. (2022). Comparison of the physicochemical properties of low and high-moisture extruded meat analog with varying moisture content. Journal of the Korean Society of Food Science and Nutrition, 51, 162–169.

    Article  CAS  Google Scholar 

  • Choi, Y. -S., Kim, T. -K., Choi, H. -D., Park, J. -D., Sung, J. -M., Jeon, K. -H., Paik, H. -D., & Kim, Y. -B. (2017). Optimization of replacing pork meat with yellow worm (Tenebrio molitor L.) for frankfurters. Korean Journal for Food Science of Animal Resources, 37, 617.

  • Choudhury, D., Tseng, T. W., & Swartz, E. (2020). The business of cultured meat. Trends in Biotechnology, 38, 573–577.

    Article  CAS  PubMed  Google Scholar 

  • Cornet, S. H. V., Snel, S. J. E., Schreuders, F. K. G., van der Sman, R. G. M., Beyrer, M., & van der Goot, A. J. (2022). Thermo-mechanical processing of plant proteins using shear cell and high-moisture extrusion cooking. Critical Reviews in Food Science and Nutrition, 62, 3264–3280.

    Article  CAS  PubMed  Google Scholar 

  • Costa, S., Pedro, S., Lourenço, H., Batista, I., Teixeira, B., Bandarra, N. M., Murta, D., Nunes, R., & Pires, C. (2020). Evaluation of Tenebrio molitor larvae as an alternative food source. NFS Journal, 21, 57–64.

    Article  Google Scholar 

  • Cuj-Laines, R., Hernández-Santos, B., Reyes-Jaquez, D., Delgado-Licon, E., Juárez-Barrientos, J. M., & Rodríguez-Miranda, J. (2018). Physicochemical properties of ready-to-eat extruded nixtamalized maize-based snacks enriched with grasshopper. International Journal of Food Science & Technology, 53, 1889–1895.

    Article  CAS  Google Scholar 

  • De Marchi, M., Costa, A., Pozza, M., Goi, A., & Manuelian, C. L. (2021). Detailed characterization of plant-based burgers. Scientific Reports, 11, 1–9.

    Article  Google Scholar 

  • De Smet, J., Lenaerts, S., Borremans, A., Scholliers, J., Van Der Borght, M., & Van Campenhout, L. (2019). Stability assessment and laboratory scale fermentation of pastes produced on a pilot scale from mealworms (Tenebrio molitor). LWT, 102, 113–121.

  • Dekkers, B. L., Boom, R. M., & van der Goot, A. J. (2018). Structuring processes for meat analogues. Trends in Food Science & Technology, 81, 25–36.

    Article  CAS  Google Scholar 

  • Dekkers, B. L., Nikiforidis, C. V., & van der Goot, A. J. (2016). Shear-induced fibrous structure formation from a pectin/SPI blend. Innovative Food Science & Emerging Technologies, 36, 193–200.

    Article  CAS  Google Scholar 

  • Dossey, A., Tatum, J., & McGill, W. (2016) Modern insect-based food industry: Current status, insect processing technology, and recommendations moving forward. In: Insects as sustainable food ingredients. p^pp 113–152. Elsevier.

  • Edge, M. S. & Garrett, J. L. (2020). The nutrition limitations of mimicking meat. Cereal Foods World, 65.

  • Ekmekcioglu, C., Wallner, P., Kundi, M., Weisz, U., Haas, W., & Hutter, H. -P. (2018). Red meat, diseases, and healthy alternatives: A critical review. Critical Reviews in Food Science and Nutrition, 58, 247–261.

    Article  PubMed  Google Scholar 

  • Elzerman, J. E., Hoek, A. C., Van Boekel, M. A., & Luning, P. A. (2011). Consumer acceptance and appropriateness of meat substitutes in a meal context. Food Quality and Preference, 22, 233–240.

    Article  Google Scholar 

  • Enrione, J., Blaker, J. J., Brown, D. I., Weinstein-Oppenheimer, C. R., Pepczynska, M., Olguín, Y., Sánchez, E., & Acevedo, C. A. (2017). Edible scaffolds based on non-mammalian biopolymers for myoblast growth. Materials (basel, Switzerland), 10, 1404.

    Article  PubMed  Google Scholar 

  • Estrada, P. D., Berton-Carabin, C. C., Schlangen, M., Haagsma, A., Pierucci, A. P. T. R., & van der Goot, A. J. (2018). Protein oxidation in plant protein-based fibrous products: Effects of encapsulated iron and process conditions. Journal of Agricultural and Food Chemistry, 66, 11105–11112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ettoumi, Y. L., Chibane, M., & Romero, A. (2016). Emulsifying properties of legume proteins at acidic conditions: Effect of protein concentration and ionic strength. LWT-Food Science and Technology, 66, 260–266.

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO). (2021). FAOSTAT Food Balances Database. In., http://www.fao.org/faostat/en/#data/FBS edn. p^pp.

  • Ge, J., Han, T. -J., Liu, J., Li, J. -S., Zhang, X. -H., Wang, Y., Li, Q. -Y., Zhu, Q., & Yang, C. -M. (2015). Meat intake and risk of inflammatory bowel disease: A meta-analysis. Turkish Journal of Gastroenterology, 26, 492–497.

    Article  Google Scholar 

  • Godfray, H. C. J., Aveyard, P., Garnett, T., Hall, J. W., Key, T. J., Lorimer, J., Pierrehumbert, R. T., Scarborough, P., Springmann, M., & Jebb, S. A. (2018). Meat consumption, health, and the environment. Science, 361, eaam5324.

  • Govorushko, S. (2019). Global status of insects as food and feed source: A review. Trends in Food Science & Technology, 91, 436–445.

    Article  CAS  Google Scholar 

  • Grabowska, K. J., Tekidou, S., Boom, R. M., & van der Goot, A. -J. (2014). Shear structuring as a new method to make anisotropic structures from soy–gluten blends. Food Research International, 64, 743–751.

    Article  CAS  PubMed  Google Scholar 

  • Gu, B. -Y., & Ryu, G. -H. (2018). Effects of barrel temperature and addition of corn starch on physical properties of extruded soy protein isolate. Journal of the Korean Society of Food Science and Nutrition, 47, 485–491.

    Article  CAS  Google Scholar 

  • Guo, Z., Teng, F., Huang, Z., Lv, B., Lv, X., Babich, O., Yu, W., Li, Y., Wang, Z., & Jiang, L. (2020). Effects of material characteristics on the structural characteristics and flavor substances retention of meat analogs. Food Hydrocolloids, 105, 105752.

    Article  Google Scholar 

  • Haber, M., Mishyna, M., Itzhak Martinez, J. J., & Benjamin, O. (2019). Edible larvae and pupae of honey bee (Apis mellifera): Odor and nutritional characterization as a function of diet. Food Chemistry, 292, 197–203.

    Article  CAS  PubMed  Google Scholar 

  • Hanga, A., & J., Moutsatsou, P., de la Raga, F. A., Hewitt, C. J., Nienow, A. & Wall, I. (2020). Bioprocess development for scalable production of cultivated meat. Biotechnology and Bioengineering, 117, 3029–3039.

    Article  CAS  PubMed  Google Scholar 

  • Hanga, M. P., Ali, J., Moutsatsou, P., de la Raga, F. A., Hewitt, C. J., Nienow, A., & Wall, I. (2020). Bioprocess development for scalable production of cultivated meat. Biotechnology and Bioengineering, 117, 3029–3039.

    Article  CAS  PubMed  Google Scholar 

  • Hanga, M. P., de la Raga, F. A., Moutsatsou, P., Hewitt, C. J., Nienow, A. W., & Wall, I. (2021). Scale-up of an intensified bioprocess for the expansion of bovine adipose-derived stem cells (bASCs) in stirred tank bioreactors. Biotechnology and Bioengineering, 118, 3175–3186.

    Article  CAS  PubMed  Google Scholar 

  • He, J., Evans, N. M., Liu, H., & Shao, S. (2020). A review of research on plant-based meat alternatives: Driving forces, history, manufacturing, and consumer attitudes. Comprehensive Reviews in Food Science and Food Safety, 19, 2639–2656.

    Article  PubMed  Google Scholar 

  • Hernández-Álvarez, A. -J., Mondor, M., Piña-Domínguez, I. -A., Sánchez-Velázquez, O. -A., & Melgar Lalanne, G. (2021). Drying technologies for edible insects and their derived ingredients. Drying Technology, 39, 1991–2009.

    Article  Google Scholar 

  • Holman, B. W., Mao, Y., Coombs, C. E., van de Ven, R. J., & Hopkins, D. L. (2016). Relationship between colorimetric (instrumental) evaluation and consumer-defined beef colour acceptability. Meat Science, 121, 104–106.

    Article  PubMed  Google Scholar 

  • https://faq.impossiblefoods.com/hc/en-us/articles/360018937494-What-are-the-ingredients-in-Impossible-Burger

  • https://faq.impossiblefoods.com/hc/en-us/articles/4407692810135-What-are-the-ingredients-in-Impossible-Chicken-Nuggets-Made-From-Plants

  • https://faq.impossiblefoods.com/hc/en-us/articles/4413236331415-What-are-the-ingredients-in-Impossible-Meatballs-Made-From-Plants

  • https://faq.impossiblefoods.com/hc/en-us/articles/1500011068222-What-are-the-ingredients-in-Impossible-Sausage-Made-From-Plants

  • https://finlessfoods.com/about/#products

  • https://future-meat.com/

  • https://goodmeat.co/process

  • https://lightlife.com/product/plant-based-burger/

  • https://mosameat.com/the-mission

  • https://shiokmeats.com/over-95-hongkong-want-to-try-cultivated-meat-and-seafood-study/

  • https://supermeat.com/

  • https://techcrunch.com/2020/07/21/higher-steaks-brings-home-the-bacon-revealing-lab-grown-pork-belly-and-bacon-strips/

  • https://upsidefoods.com/our-foods/

  • https://whollyveggie.com/products/herby-garlic-greens

  • https://whollyveggie.com/products/southwest-beet

  • https://whollyveggie.com/products/sweet-curry-carrot

  • https://world.openfoodfacts.org/product/12148224/veggie-bistro-burgers-yves

  • https://www.aleph-farms.com/blog/fast-company-world-changing-ideas

  • https://www.beyondmeat.com/en-US/products/the-beyond-burger Retrieved May 12, 2022, from https://www.beyondmeat.com/en-US/products/the-beyond-burger

  • https://www.bluenalu.com/

  • https://www.builtwithbiology.com/read/next-on-the-menu-cellular-agriculture-could-domesticate-any-animal-on-the-planet

  • https://www.businessinsider.com/lab-grown-clean-cell-meat-photos-taste-review-2018-9?r=UK&IR=T

  • https://www.cnbc.com/2021/03/01/eat-just-good-meat-sells-lab-grown-cultured-chicken-in-world-first.html

  • https://www.gardein.com/beefless-and-porkless/classics/meatballs Retrieved May 12, 2022, from https://www.gardein.com/beefless-and-porkless/classics/meatballs

  • https://www.gardein.com/chickn-and-turky/classics/ultimate-plant-based-chickn-tenders

  • https://www.gardengourmet.com/product/sensational-burger

  • https://www.gardengourmet.com/product/sensational-chorizo

  • https://www.gardengourmet.com/product/sensational-filet-pieces-asian-seasoning

  • https://www.gardengourmet.com/product/sensational-filet-pieces-mediterranean

  • https://www.gardengourmet.com/product/sensational-filet-pieces-mexican-seasoning

  • https://www.gardengourmet.com/product/sensational-sausage

  • https://www.quorn.us/products/quorn-meatless-chicken-nuggets Retrieved May 12, 2022, from https://www.quorn.us/products/quorn-meatless-chicken-nuggets

  • https://www.walmart.ca/en/ip/great-value-the-ultimate-meatless-burger/6000200049103

  • Hwang, J., You, J., Moon, J., & Jeong, J. (2020). Factors affecting consumers’ alternative meats buying intentions: Plant-based meat alternative and cultured meat. Sustainability, 12, 5662.

    Article  Google Scholar 

  • Ianovici, I., Zagury, Y., Redenski, I., Lavon, N., & Levenberg, S. (2022). 3D-printable plant protein-enriched scaffolds for cultivated meat development. Biomaterials, 284, 121487.

    Article  CAS  PubMed  Google Scholar 

  • Igual, M., García-Segovia, P., & Martínez-Monzó, J. (2020). Effect of Acheta domesticus (house cricket) addition on protein content, colour, texture, and extrusion parameters of extruded products. Journal of Food Engineering, 282, 110032.

    Article  CAS  Google Scholar 

  • Jaques, A., Sánchez, E., Orellana, N., Enrione, J., & Acevedo, C. A. (2021). Modelling the growth of in-vitro meat on microstructured edible films. Journal of Food Engineering, 307, 110662.

    Article  CAS  Google Scholar 

  • Joo, S. -T., Choi, J. -S., Hur, S. -J., Kim, G. -D., Kim, C. -J., Lee, E. -Y., Bakhsh, A., & Hwang, Y. -H. (2022). A comparative study on the taste characteristics of satellite cell cultured meat derived from chicken and cattle muscles. Food Science of Animal Resources, 42, 175–185.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang, D.-H., Louis, F., Liu, H., Shimoda, H., Nishiyama, Y., Nozawa, H., Kakitani, M., Takagi, D., Kasa, D., Nagamori, E., Irie, S., Kitano, S., & Matsusaki, M. (2021). Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nature Communications, 12, 5059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keet, C. A., Matsui, E. C., Dhillon, G., Lenehan, P., Paterakis, M., & Wood, R. A. (2009). The natural history of wheat allergy. Annals of Allergy, Asthma & Immunology, 102, 410–415.

    Article  CAS  Google Scholar 

  • Kim, B. G. (2022). Insects as animal feed: Novel ingredients for use in pet, aquaculture and livestock diet. Animal Bioscience, 35, 153–154.

    Article  PubMed  Google Scholar 

  • Kim, Y. M., Park, Y. H., Lim, J. M., Jung, H., & Han, J. Y. (2017). Technical note: Induction of pluripotent stem cell-like cells from chicken feather follicle cells1. Journal of Animal Science, 95, 3479–3486.

    Article  CAS  PubMed  Google Scholar 

  • Klunder, H. C., Wolkers-Rooijackers, J., Korpela, J. M., & Nout, M. J. R. (2012). Microbiological aspects of processing and storage of edible insects. Food Control, 26, 628–631.

    Article  Google Scholar 

  • Kouřimská, L., & Adámková, A. (2016). Nutritional and sensory quality of edible insects. NFS Journal, 4, 22–26.

    Article  Google Scholar 

  • Krintiras, G. A., Göbel, J., van der Goot, A. J., & Stefanidis, G. D. (2015). Production of structured soy-based meat analogues using simple shear and heat in a Couette Cell. Journal of Food Engineering, 160, 34–41.

    Article  CAS  Google Scholar 

  • Krintiras, G. A., Gadea Diaz, J., van der Goot, A. J., Stankiewicz, A. I., & Stefanidis, G. D. (2016). On the use of the Couette Cell technology for large scale production of textured soy-based meat replacers. Journal of Food Engineering, 169, 205–213.

    Article  CAS  Google Scholar 

  • Kurek, M. A., Onopiuk, A., Pogorzelska-Nowicka, E., Szpicer, A., Zalewska, M., & Półtorak, A. (2022). Novel protein sources for applications in meat-alternative products- Insight and challenges. Foods, 11, 957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyriakopoulou, K., Dekkers, B., & van der Goot, A. J. (2019) Chapter 6 - Plant-based meat analogues. In: Galanakis CM (ed) Sustainable meat production and processing. p^pp 103–126. Academic Press.

  • Lee, D. Y., Lee, S. Y., Jung, J. W., Kim, J. H., Oh, D. H., Kim, H. W., Kang, J. H., Choi, J. S., Kim, G. -D., Joo, S. -T., & Hur, S. J. (2022a). Review of technology and materials for the development of cultured meat. Critical Reviews in Food Science and Nutrition, 1–25.

  • Lee, H. J., Yong, H. I., Kim, M., Choi, Y. -S., & Jo, C. (2020). Status of meat alternatives and their potential role in the future meat market — A review. Asian-Australasian Journal of Animal Sciences, 33, 1533–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J., Park, J., Choe, H., & Shim, K. (2022b). Insect peptide CopA3 promotes proliferation and PAX7 and MYOD expression in porcine muscle satellite cells. Journal of Animal Science and Technology, 64, 1132–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, B. -J., Li, P. -H., Huang, R. -H., Sun, W. -X., Wang, H., Li, Q. -F., Chen, J., Wu, W. -J., & Liu, H. -L. (2015). Isolation, culture and identification of porcine skeletal muscle satellite cells. Asian-Australasian Journal of Animal Sciences, 28, 1171–1177.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Liu, W., Li, S., Zhang, M., Yang, F., & Wang, S. (2021). Porcine skeletal muscle tissue fabrication for cultured meat production using three-dimensional bioprinting technology. Journal of Future Foods, 1, 88–97.

    Article  Google Scholar 

  • Libera, J., Iłowiecka, K., & Stasiak, D. (2021). Consumption of processed red meat and its impact on human health: A review. International Journal of Food Science & Technology, 56, 6115–6123.

    Article  CAS  Google Scholar 

  • Listrat, A., Lebret, B., Louveau, I., Astruc, T., Bonnet, M., Lefaucheur, L., Picard, B., & Bugeon, J. (2016). How muscle structure and composition influence meat and flesh quality. The Scientific World Journal, 2016, 3182746.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, M., Zhao, L., Wang, Z., Su, H., Wang, T., Yang, G., Chen, L., Wu, B., Zhao, G., Guo, J., Yang, Z., Zhang, J., Hao, C., Ma, T., Song, Y., Bao, S., Zuo, Y., Li, X. & Cao, G. (2021). Generation of sheep induced pluripotent stem cells with defined DOX-inducible transcription factors via piggyBac transposition. Frontiers in Cell and Developmental Biology, 9.

  • Lucas-González, R., Fernández-López, J., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2019). Effect of drying processes in the chemical, physico-chemical, techno-functional and antioxidant properties of flours obtained from house cricket (Acheta domesticus). European Food Research and Technology, 245, 1451–1458.

    Article  Google Scholar 

  • Lyahyai, J., Mediano, D. R., Ranera, B., Sanz, A., Remacha, A. R., Bolea, R., Zaragoza, P., Rodellar, C., & Martín-Burriel, I. (2012). Isolation and characterization of ovine mesenchymal stem cells derived from peripheral blood. BMC Veterinary Research, 8, 169.

    Article  PubMed  PubMed Central  Google Scholar 

  • MacQueen, L. A., Alver, C. G., Chantre, C. O., Ahn, S., Cera, L., Gonzalez, G. M., O’Connor, B. B., Drennan, D. J., Peters, M. M., Motta, S. E., Zimmerman, J. F., & Parker, K. K. (2019). Muscle tissue engineering in fibrous gelatin: Implications for meat analogs. NPJ Science of Food, 3, 20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mariod, A. A., Saeed Mirghani, M. E., & Hussein, I. (2017) Chapter 48 - Acheta domesticus house cricket. In: Mariod AA, Saeed Mirghani ME & Hussein I (eds) Unconventional oilseeds and oil sources. p^pp 323–325. Academic Press.

  • Martínez-Villaluenga, C., Gulewicz, P., Frias, J., Gulewicz, K., & Vidal-Valverde, C. (2008). Assessment of protein fractions of three cultivars of Pisum sativum L.: Effect of germination. European Food Research and Technology, 226, 1465–1478.

    Article  Google Scholar 

  • Mattice, K. D., & Marangoni, A. G. (2020). Comparing methods to produce fibrous material from zein. Food Research International, 128, 108804.

    Article  CAS  PubMed  Google Scholar 

  • Maung, T. -T., Gu, B. -Y., & Ryu, G. -H. (2021). Influence of extrusion process parameters on specific mechanical energy and physical properties of high-moisture meat analog. International Journal of Food Engineering, 17, 149–157.

    Article  CAS  Google Scholar 

  • Medeiros, G. C. B. S. d., Azevedo, K. P. M. d., Mesquita, G. X. B., Lima, S. C. V. C., Silva, D. F. d. O., Pimenta, I. D. S. F., Gonçalves, A. K. d. S., Lyra, C. d. O., & Piuvezam, G. (2019). Red meat consumption, risk of incidence of cardiovascular disease and cardiovascular mortality, and the dose–response effect: Protocol for a systematic review and meta-analysis of longitudinal cohort studies. Medicine, 98.

  • Michel, F., Hartmann, C., & Siegrist, M. (2021). Consumers’ associations, perceptions and acceptance of meat and plant-based meat alternatives. Food Quality and Preference, 87, 104063.

    Article  Google Scholar 

  • Mlcek, J., Rop, O., Borkovcova, M., & Bednarova, M. (2014). A comprehensive look at the possibilities of edible insects as food in europe – A review. Polish Journal of Food and Nutrition Sciences, 64, 147–157.

    Article  CAS  Google Scholar 

  • Mottet, A., de Haan, C., Falcucci, A., Tempio, G., Opio, C., & Gerber, P. (2017). Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Global Food Security, 14, 1–8.

    Article  Google Scholar 

  • Moura, M. A. F. e., Martins, B. d. A., Oliveira, G. P. d., & Takahashi, J. A. (2022). Alternative protein sources of plant, algal, fungal and insect origins for dietary diversification in search of nutrition and health. Critical Reviews in Food Science and Nutrition, 1–18.

  • Musina, R. A., Bekchanova, E. S., Belyavskii, A. V., & Sukhikh, G. T. (2006). Differentiation potential of mesenchymal stem cells of different origin. Bulletin of Experimental Biology and Medicine, 141, 147–151.

    Article  CAS  PubMed  Google Scholar 

  • Nasrollahzadeh, F., Roman, L., Swaraj, V. J. S., Ragavan, K. V., Vidal, N. P., Dutcher, J. R., & Martinez, M. M. (2022). Hemp (Cannabis sativa L.) protein concentrates from wet and dry industrial fractionation: Molecular properties, nutritional composition, and anisotropic structuring. Food Hydrocolloids, 131, 107755.

  • Nassan, F. L., Chiu, Y. -H., Vanegas, J. C., Gaskins, A. J., Williams, P. L., Ford, J. B., Attaman, J., Hauser, R., Chavarro, J. E., & Team, E. S. (2018). Intake of protein-rich foods in relation to outcomes of infertility treatment with assisted reproductive technologies. The American Journal of Clinical Nutrition, 108, 1104–1112.

    Article  Google Scholar 

  • Newton, P., & Blaustein-Rejto, D. (2021). Social and economic opportunities and challenges of plant-based and cultured meat for rural producers in the US. Frontiers in Sustainable Food Systems, 5, 624270.

    Article  Google Scholar 

  • Nieuwland, M., Geerdink, P., Brier, P., van den Eijnden, P., Henket, J. T. M. M., Langelaan, M. L. P., Stroeks, N., van Deventer, H. C., & Martin, A. H. (2014). Food-grade electrospinning of proteins. Innovative Food Science & Emerging Technologies, 20, 269–275.

    Article  Google Scholar 

  • OECD/FAO. (2021). OECD-FAO Agricultural Outlook 2021–2030. https://doi.org/10.1787/19428846-en

  • Okita, K., Matsumura, Y., Sato, Y., Okada, A., Morizane, A., Okamoto, S., Hong, H., Nakagawa, M., Tanabe, K., Tezuka, K. -I., Shibata, T., Kunisada, T., Takahashi, M., Takahashi, J., Saji, H., & Yamanaka, S. (2011). A more efficient method to generate integration-free human iPS cells. Nature Methods, 8, 409–412.

    Article  CAS  PubMed  Google Scholar 

  • Osterhaus, E. J., & Smith, O. B. (1976) Method of preparing dense, uniformly layered vegetable protein meat analogue. In. p^pp. Google Patents.

  • Post, M. J. (2012). Cultured meat from stem cells: Challenges and prospects. Meat Science, 92, 297–301.

    Article  PubMed  Google Scholar 

  • Purschke, B., Stegmann, T., Schreiner, M., & Jäger, H. (2017). Pilot-scale supercritical CO2 extraction of edible insect oil from Tenebrio molitor L. larvae – Influence of extraction conditions on kinetics, defatting performance and compositional properties. European Journal of Lipid Science and Technology, 119, 1600134.

  • Reiss, J., Robertson, S., & Suzuki, M. (2021). Cell sources for cultivated meat: Applications and considerations throughout the production workflow. International Journal of Molecular Sciences, 22, 7513.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouhani, M. H., Salehi-Abargouei, A., Surkan, P. J., & Azadbakht, L. (2014). Is there a relationship between red or processed meat intake and obesity? A systematic review and meta-analysis of observational studies. Obesity Reviews, 15, 740–748.

    Article  CAS  PubMed  Google Scholar 

  • Roy, B., Hagappa, A., Ramalingam, Y. D., & Mahalingam, N. (2021). A review on lab-grown meat: Advantages and disadvantages. Quest International Journal of Medical and Health Sciences, 4, 19–24.

    Google Scholar 

  • Rubio, N. R., Xiang, N., & Kaplan, D. L. (2020a). Plant-based and cell-based approaches to meat production. Nature Communications, 11, 6276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio, N. R., Xiang, N., & Kaplan, D. L. (2020b). Plant-based and cell-based approaches to meat production. Nature Communications, 11, 1–11.

    Article  Google Scholar 

  • Rumpold, B. A., & Schlüter, O. K. (2013). Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research, 57, 802–823.

    Article  CAS  Google Scholar 

  • Ryu, M., Kim, M., Jung, H. Y., Kim, C. H., & Jo, C. (2023). Effect of p38 inhibitor on the proliferation of chicken muscle stem cells and differentiation into muscle and fat. Animal Bioscience, 36, 295–306.

    Article  CAS  PubMed  Google Scholar 

  • Samard, S., Gu, B. -Y., & Ryu, G. -H. (2019). Effects of extrusion types, screw speed and addition of wheat gluten on physicochemical characteristics and cooking stability of meat analogues. Journal of the Science of Food and Agriculture, 99, 4922–4931.

    Article  CAS  PubMed  Google Scholar 

  • Santo, R. E., Kim, B. F., Goldman, S. E., Dutkiewicz, J., Biehl, E. M. B., Bloem, M. W., Neff, R. A., & Nachman, K. E. (2020). Considering plant-based meat substitutes and cell-based meats: A public health and food systems perspective. Frontiers in Sustainable Food Systems, 4.

  • Saviane, A., Tassoni, L., Naviglio, D., Lupi, D., Savoldelli, S., Bianchi, G., Cortellino, G., Bondioli, P., Folegatti, L., Casartelli, M., Orlandi, V. T., Tettamanti, G., & Cappellozza, S. (2021). Mechanical processing of Hermetia illucens larvae and Bombyx mori pupae produces oils with antimicrobial activity. Animals, 11, 783.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schreuders, F. K. G., Dekkers, B. L., Bodnár, I., Erni, P., Boom, R. M., & van der Goot, A. J. (2019). Comparing structuring potential of pea and soy protein with gluten for meat analogue preparation. Journal of Food Engineering, 261, 32–39.

    Article  CAS  Google Scholar 

  • Severini, C., Azzollini, D., Albenzio, M., & Derossi, A. (2018). On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects. Food Research International, 106, 666–676.

    Article  CAS  PubMed  Google Scholar 

  • Shah, A. A., Totakul, P., Matra, M., Cherdthong, A., Hanboonsong, Y., & Wanapat, M. (2022). Nutritional composition of various insects and potential uses as alternative protein sources in animal diets. Animal Bioscience, 35, 317–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sher, D., & Tutó, X. (2015). Review of 3D food printing. Temes De Disseny, 31, 104–117.

    Google Scholar 

  • Singh, M., Trivedi, N., Enamala, M. K., Kuppam, C., Parikh, P., Nikolova, M. P., & Chavali, M. (2021). Plant-based meat analogue (PBMA) as a sustainable food: A concise review. European Food Research and Technology, 247, 2499–2526.

    Article  CAS  Google Scholar 

  • Smetana, S., Ashtari Larki, N., Pernutz, C., Franke, K., Bindrich, U., Toepfl, S., & Heinz, V. (2018). Structure design of insect-based meat analogs with high-moisture extrusion. Journal of Food Engineering, 229, 83–85.

    Article  CAS  Google Scholar 

  • Starowicz, M., Kubara Poznar, K., & Zieliński, H. (2022). What are the main sensory attributes that determine the acceptance of meat alternatives? Current Opinion in Food Science, 48, 100924.

    Article  CAS  Google Scholar 

  • Stout, A. J., Mirliani, A. B., Rittenberg, M. L., Shub, M., White, E. C., Yuen, J. S. K., & Kaplan, D. L. (2022). Simple and effective serum-free medium for sustained expansion of bovine satellite cells for cell cultured meat. Communications Biology, 5, 466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, C., Ge, J., He, J., Gan, R., & Fang, Y. (2021). Processing, quality, safety, and acceptance of meat analogue products. Engineering, 7, 674–678.

    Article  Google Scholar 

  • Sun, M., Xu, X., Zhang, Q., Rui, X., Wu, J., & Dong, M. (2018). Ultrasonic-assisted aqueous extraction and physicochemical characterization of oil from Clanis bilineata. Journal of Oleo Science, 67, 151–165.

    Article  CAS  PubMed  Google Scholar 

  • Teffo, L. S., Toms, R., & Eloff, J. N. (2007). Preliminary data on the nutritional composition of the edible stink-bug, Encosternum delegorguei Spinola, consumed in Limpopo province, South Africa. South African Journal of Science, 103, 434–436.

    CAS  Google Scholar 

  • Van Huis, A. (2013). Potential of insects as food and feed in assuring food security. Annual Review of Entomology, 58, 563–583.

    Article  PubMed  Google Scholar 

  • Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., & Vantomme, P. (2013) Edible insects: Future prospects for food and feed security. vol 171. Food and agriculture organization of the United Nations,

  • van Vliet, S., Bain, J. R., Muehlbauer, M. J., Provenza, F. D., Kronberg, S. L., Pieper, C. F., & Huffman, K. M. (2021). A metabolomics comparison of plant-based meat and grass-fed meat indicates large nutritional differences despite comparable Nutrition Facts panels. Scientific Reports, 11, 13828.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Wezel, A. L. (1967). Growth of cell-strains and primary cells on micro-carriers in homogeneous culture. Nature, 216, 64–65.

    Article  PubMed  Google Scholar 

  • Wu, R. A., Ding, Q., Yin, L., Chi, X., Sun, N., He, R., Luo, L., Ma, H., & Li, Z. (2020). Comparison of the nutritional value of mysore thorn borer (Anoplophora chinensis) and mealworm larva (Tenebrio molitor): Amino acid, fatty acid, and element profiles. Food Chemistry, 323, 126818.

    Article  CAS  PubMed  Google Scholar 

  • Ye, Y., Zhou, J., Guan, X., & Sun, X. (2022). Commercialization of cultured meat products: Current status, challenges, and strategic prospects. Future Foods, 6, 100177.

    Article  CAS  Google Scholar 

  • Yuan, X., Zhu, X., Sun, R., Jiang, W., Zhang, D., Liu, H., & Sun, B. (2022). Sensory attributes and characterization of aroma profiles of fermented sausages based on fibrous-like meat substitute from soybean protein and Coprinus comatus. Food Chemistry, 373, 131537.

    Article  CAS  PubMed  Google Scholar 

  • Yuliarti, O., Kiat Kovis, T. J., & Yi, N. J. (2021). Structuring the meat analogue by using plant-based derived composites. Journal of Food Engineering, 288, 110138.

    Article  Google Scholar 

  • Zahari, I., Ferawati, F., Helstad, A., Ahlström, C., Östbring, K., Rayner, M., & Purhagen, J. K. (2020). Development of high-moisture meat analogues with hemp and soy protein using extrusion cooking. Foods, 9, 772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, C., Guan, X., Yu, S., Zhou, J., & Chen, J. (2022). Production of meat alternatives using live cells, cultures and plant proteins. Current Opinion in Food Science, 43, 43–52.

    Article  Google Scholar 

Download references

Funding

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through High Value-added Food Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA)(321028–5, 322008-5).

Author information

Authors and Affiliations

Authors

Contributions

Seung Yun Lee: writing original draft, investigation; Da Young Lee, Jae Won Jeong, Jae Hyeon Kim, Seung Hyeon Yun, Seon-Tea Joo, Inho Choi, Jung Seok Choi, and Gap-Don Kim: investigation; Sun Jin Hur: writing original draft, conceptualization.

Corresponding author

Correspondence to Sun Jin Hur.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.Y., Lee, D.Y., Jeong, J.W. et al. Studies on Meat Alternatives with a Focus on Structuring Technologies. Food Bioprocess Technol 16, 1389–1412 (2023). https://doi.org/10.1007/s11947-022-02992-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02992-0

Keywords

Navigation