Skip to main content
Log in

Micropatterning Technology to Design an Edible Film for In Vitro Meat Production

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In vitro meat is an edible muscle tissue produced in a laboratory using bioengineering tools, avoiding the slaughter of farmed animals. In the early stages of in vitro meat production, the muscle cells need to be oriented and aligned to form muscle fibers. Additionally, the adherent muscle cells require an appropriate matrix where they can proliferate and differentiate. In this work, a film (matrix) was formulated with edible biopolymers and then shaped using micropattern mold and cold-casting technique. The mold was fabricated by using a laser cutter, allowing building parallel microchannels of ~ 70 μm wide. The film surface was suitable for laying muscle cells in a fiber-like array. Microstructural characterization of the micropatterned structures was done by using stereoscopic microscope and scanning electron microscopy. The micropatterned films displayed high biocompatibility, allowing muscle cell adhesion (~ 70%) and growth (doubling time ~ 18 h). Fluorescence microscopy was used to study the morphology of the cells cultured onto the micropatterned films, showing fiber-like morphology (~ 80-μm fiber diameters). The shape and size of the obtained cells mimic the muscle fiber. By using immunofluorescence microscopy, the expression of specific myogenic markers was identified. These results confirm that edible films made by casting on micropatterned molds can be used for in vitro meat production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acevedo, C. A., López, D. A., Tapia, M. J., Enrione, J., Skurtys, O., Pedreschi, F., Brown, D. I., Creixell, W., & Osorio, F. (2012). Using RGB image processing for designing an alginate edible film. Food and Bioprocess Technology, 5(5), 1511–1520.

    Article  Google Scholar 

  • Andrés, V., & Walsh, K. (1996). Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. Journal of Cell Biology, 132(4), 657–666.

    Article  PubMed  Google Scholar 

  • Bian, W., & Bursac, N. (2009). Engineered skeletal muscle tissue networks with controllable architecture. Biomaterials, 30(7), 1401–1412.

    Article  CAS  PubMed  Google Scholar 

  • Burattini, S., Ferri, P., Battistelli, M., Curci, R., Luchetti, F., & Falcieri, E. (2004). C2C12 murine myoblasts as a model of skeletal muscle development: Morpho-functional characterization. European Journal of Histochemistry, 48(3), 223–233.

    CAS  PubMed  Google Scholar 

  • Capetanaki, Y., Milner, D. J., & Weitzer, G. (1997). Desmin in muscle formation and maintenance: Knockouts and consequences. Cell Structure and Function, 22(1), 103–116.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Stegaev, V., Kouri, V. P., Sillat, T., Chazot, P. L., Stark, H., Wen, J. G., & Konttinen, Y. T. (2015). Identification of histamine receptor subtypes in skeletal myogenesis. Molecular Medicine Reports, 11(4), 2624–2630.

    Article  CAS  PubMed  Google Scholar 

  • Datar, I., & Betti, M. (2010). Possibilities for an in vitro meat production system. Innovative Food Science and Emerging Technologies, 11(1), 13–22.

    Article  CAS  Google Scholar 

  • Díaz, P., López, D., Matiacevich, S., Osorio, F., & Enrione, J. (2011). State diagram of salmon (Salmo salar) gelatin films. Journal of the Science of Food and Agriculture, 91(14), 2558–2565.

    Article  CAS  PubMed  Google Scholar 

  • Enrione, J. I., Sáez, C., López, D., Skurtys, O., Acevedo, C., Osorio, F., MacNaughtan, W., & Hill, S. (2012). Structural relaxation of salmon gelatin films in the glassy state. Food and Bioprocess Technology, 5(6), 2446–2453.

    Article  CAS  Google Scholar 

  • Enrione, J., Blaker, J. J., Brown, D. I., Weinstein-Oppenheimer, C. R., Pepczynska, M., Olguín, Y., Sánchez, E., & Acevedo, C. A. (2017). Edible scaffolds based on non-mammalian biopolymers for myoblast growth. Materials, 10(12), 1404.

    Article  PubMed Central  Google Scholar 

  • Enrione, J., Pino, K., Pepczynska, M., Brown, D. I., Ortiz, R., Sánchez, E., & Acevedo, C. A. (2018). A novel biomaterial based on salmon-gelatin and its in-vivo evaluation as sterile wound-dressing. Materials Letters, 212(1), 159–164.

    Article  CAS  Google Scholar 

  • Goodwin, J. N., & Shoulders, C. W. (2013). The future of meat: A qualitative analysis of cultured meat media coverage. Meat Science, 95(3), 445–450.

    Article  CAS  PubMed  Google Scholar 

  • Kroehne, V., Heschel, I., Schügner, F., Lasrich, D., Bartsch, J. W., & Jockusch, H. (2008). Use of a novel collagen matrix with oriented pore structure for muscle cell differentiation in cell culture and in grafts. Journal of Cellular and Molecular Medicine, 12(5A), 1640–1648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurth, F., Franco-Obregón, A., Bärtschi, C. A., & Dittrich, P. S. (2015). An adaptable stage perfusion incubator for the controlled cultivation of C2C12 myoblasts. Analyst, 140(1), 127–133.

    Article  CAS  PubMed  Google Scholar 

  • Langelaan, M. L. P., Boonen, K. J. M., Polak, R. B., Baaijens, F. P. T., Post, M. J., & van der Schaft, D. W. J. (2010). Meet the new meat: Tissue engineered skeletal muscle. Trends in Food Science & Technology, 21(2), 59–66.

    Article  CAS  Google Scholar 

  • Lawrie, R. A., & Ledward, D. A. (2006). Lawrie's meat science (7th ed.). Cambridge: Woodhead Publishing Limited.

    Book  Google Scholar 

  • Li, G., Zhao, X., Zhao, W., Zhang, L., Wang, C., Jiang, M., Gu, X., & Yang, Y. (2014). Porous chitosan scaffolds with surface micropatterning and inner porosity and their effects on Schwann cells. Biomaterials, 35(30), 8503–8513.

    Article  CAS  PubMed  Google Scholar 

  • Papenburg, B. J., Vogelaar, L., Bolhuis-Versteeg, L. A., Lammertink, R. G., Stamatialis, D., & Wessling, M. (2007). Biomaterials, 28(11), 1998–2009.

    Article  CAS  PubMed  Google Scholar 

  • Post, M. J. (2012). Cultured meat from stem cells: Challenges and prospects. Meat Science, 92(3), 297–301.

    Article  PubMed  Google Scholar 

  • Post, M. J. (2014). An alternative animal protein source: Cultured beef. Annals of the New York Academy of Sciences, 1328(1), 29–33.

    Article  CAS  PubMed  Google Scholar 

  • Schuster, E., Wallin, P., Klose, F. P., Gold, J., & Strom, A. (2017). Correlating network structure with functional properties of capillary alginate gels for muscle fiber formation. Food Hydrocolloids, 72(1), 210–218.

    Article  CAS  Google Scholar 

  • Théry, M. (2010). Micropatterning as a tool to decipher cell morphogenesis and functions. Journal of Cell Science, 123(24), 4201–4213.

    Article  CAS  PubMed  Google Scholar 

  • Verbeke, W., Marcu, A., Rutsaert, P., Gaspar, R., Seibt, B., Fletcher, D., & Barnett, J. (2015). Would you eat cultured meat? Consumers' reactions and attitude formation in Belgium, Portugal and the United Kingdom. Meat Science, 102(1), 49–58.

    Article  PubMed  Google Scholar 

  • Yan, W., George, S., Fotadar, U., Tyhovych, N., Kamer, A., Yost, M. J., Price, R. L., Haggart, C. R., Holmes, J. W., & Terracio, L. (2007). Tissue engineering of skeletal muscle. Tissue Engineering, 13(11), 2781–2790.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank financial support from FONDECYT Grant 1160311 (CONICYT, Chile).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian A. Acevedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acevedo, C.A., Orellana, N., Avarias, K. et al. Micropatterning Technology to Design an Edible Film for In Vitro Meat Production. Food Bioprocess Technol 11, 1267–1273 (2018). https://doi.org/10.1007/s11947-018-2095-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2095-4

Keywords

Navigation