Skip to main content
Log in

Application of Novel Processing Method (Multiple-Pass Ultrasonication with Mechanical Homogenization) for Producing Puree from Processed Carrot Discards

  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Processed carrot discards and graded carrots were mixed in different proportions (0, 25, 50, 75, 100%), with and without peels and crowns, and processed into carrot puree. A novel processing method consisting of multiple-pass ultrasonication with mechanical homogenization was used for the processing of puree from carrot rejects and waste (processed carrot discards). The samples were ultrasonicated for 9 min, followed by mechanical homogenization for 1 min subjected to three passes. The processed puree was evaluated for particle size distribution, β-carotene content, and color. Fourier transform infrared spectroscopy and Raman spectrophotometry data were collected for the molecular fingerprinting of the puree. Samples prepared by mixing processed carrot discards and graded carrots (50:50), with peels and crowns reported particle size distribution (PSD) for d (0.1) and d (0.5) as 125.13 and 295.25 μm, with a β-carotene content of (395.4 μg/g) and color value “a” 17.83. All the values were comparable to the responses recorded for puree samples processed without peels and crowns. The results confirm the sustainable utilization of processed carrot discards into puree, allowing the maximum retention of β-carotene and desirable particle size in the puree, reducing the influx of carrot rejects to landfills which are contributing to greenhouse gas emissions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

All data generated or analysed during this study are included in this published article.

References

  • Ammavath, W., & Man, Y. B. (2010). A rapid method for determination of commercial beta carotene in RBD palm olein by Fourier transform infrared spectroscopy. Asian Journal of Food and Agro Industry, 3, 443–452.

    Google Scholar 

  • Bakshi, M., & Makkar, H. (2016). Waste to worth : Vegetable Wastes as Animal Feed. https://doi.org/10.1079/PAVSNNR201611012

    Article  Google Scholar 

  • Baranska, M., Baranski, R., Schulz, H., & Nothnagel, T. (2006). Tissue-specific accumulation of carotenoids in carrot roots. Planta, 224(5), 1028–1037. https://doi.org/10.1007/s00425-006-0289-x

    Article  CAS  PubMed  Google Scholar 

  • Baranska, M., Schulz, H., Baranski, R., Nothnagel, T., & Christensen, L. P. (2005). In situ simultaneous analysis of polyacetylenes, carotenoids and polysaccharides in carrot roots. Journal of Agricultural and Food Chemistry, 53(17), 6565–6571. https://doi.org/10.1021/jf0510440

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson, H., & Tornberg, E. (2011). Physicochemical characterization of fruit and vegetable fiber suspensions. I: Effect of homogenization. Journal of Texture Studies, 42(4), 268–280.

  • Berezin, K., & Nechaev, V. (2005). Calculation of the IR spectrum and the molecular structure of β-carotene. Journal of Applied Spectroscopy, 72(164–171).

  • Brandt, K., Christensen, L., Hansen-Møller, J., Hansen, S. L., Haralsdottir, J., Jespersen, L., Purup, S., Kharazmi, A., Barkholt, V., Frokiaer, H., & Kobaek-Larsen, M. (2004). Health promoting compound in vegetables and fruits. A systematic approach for identifying plant components with impact on human health. Trends in Food Science & Technology, 15, 384–393.

    Article  CAS  Google Scholar 

  • Craft, N. E., Wise, S. A., & Soares, J. H. (1992). Optimization of an isocratic high-performance liquid chromatographic separation of carotenoids. Journal of Chromatography A, 589(1–2), 171–176. https://doi.org/10.1016/0021-9673(92)80019-Q

    Article  CAS  Google Scholar 

  • Czepa, A., & Hofmann, T. (2004). Quantitative studies and sensory analyses on the influence of cultivar, spatial tissue distribution, and industrial processing on the bitter off-taste of carrots (Daucus carota L.) and carrot products. Journal of Agricultural and Food Chemistry, 52(14), 4508–4514. https://doi.org/10.1021/jf0496393

  • Dubrovskis, V., & Plume, I. (2015). Anaerobic digestion of vegetables processing wastes with catalyst metaferm. Agronomy Research, 13(2), 294–302.

    Google Scholar 

  • Farhaninejad, Z., Fathi, M., Shahedi, M., & Sadeghi, M. (2017). Osmotic of and : Optimization and Journal of Food Process Engineering, 40(1). https://doi.org/10.1111/jfpe.12336

  • Fijalkowska, A., Nowacka, M., Wiktor, A., Sledz, M., & Witrowa-Rajchert, D. (2016). Ultrasound as a to and of. Journal of Food Process Engineering, 39(3), 256–265. https://doi.org/10.1111/jfpe.12217

    Article  Google Scholar 

  • Garrod, B., & Lewis, B. G. (1978). Cis-heptadeca-1,9-diene-4,6-diyne-3,8- diol, an antifungal polyacetylene from carrot root tissue. Physiological Plant Pathology, 13, 241–246.

    Article  CAS  Google Scholar 

  • Grote, M., & Fromme, H. G. (1978). Electron microscopic studies in cultivated plants - II. Fresh and stored roots of daucus carota L. Zeitschrift Für Lebensmittel-Untersuchung Und -Forschung, 166(2), 74–79. https://doi.org/10.1007/BF01267780

  • Kaur, G. J., Orsat, V., & Singh, A. (2022). Application of central composite face centered design for the optimization of multiple-pass ultrasonication with mechanical homogenization (MPUMH) for carrot puree processing. Innovative Food Science & Emerging Technologies. https://doi.org/10.1016/j.ifset.2022.102944

  • Kaur, G. J., Kumar, D., Orsat, V., & Singh, A. (2020). Assessment of carrot rejects and wastes for food product development and as a biofuel. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01096-z

    Article  Google Scholar 

  • Kaur, G. J., Orsat, V., & Singh, A. (2021a). An overview of different homogenizers, their working mechanisms and impact on processing of fruits and vegetables. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2021.1969890

    Article  PubMed  Google Scholar 

  • Kaur, G. J., Orsat, V., & Singh, A. (2021b). Sustainable usage of carrot discards in food processing. International Journal of Sustainable Development and World Ecology, 00(00), 1–9. https://doi.org/10.1080/13504509.2021.1896589

    Article  Google Scholar 

  • Kobæk-Larsen, M., Christensen, L. P., Vach, W., Ritskes- Hoitinga, J., & Brandt, K. (2005). Inhibitory effect of feeding with carrots or (-)-falcarinol on development of azoxymethane-induced preneoplastic lesions in the rat colon. Journal of Agriculture and Food Chemistry, 53, 1823–1827.

    Article  Google Scholar 

  • Kulczy´nski, B., & Gramza-Michałowska, A. (2019a). The profile of carotenoids and other bioactive molecules in various pumpkin fruits (Cucurbita maxima Duchesne) Cultivars. Molecules, 24, 3212.

    Article  Google Scholar 

  • Kulczy´nski, B., & Gramza-Michałowska, A. (2019b). The profile of secondary metabolites and other bioactive compounds in Cucurbita pepo L. and Cucurbita moschata pumpkin cultivars. Molecules, 24, 2945.

  • Lopez-Sanchez, P., Nijsse, J., Blonk, H. C. G., Bialek, L., Schumm, S., & Langton, M. (2011). Effect of mechanical and thermal treatments on the microstructure and rheological properties of carrot, broccoli and tomato dispersions. Journal of the Science of Food and Agriculture, 91(2), 207–217. https://doi.org/10.1002/jsfa.4168

    Article  CAS  PubMed  Google Scholar 

  • Ma, S., Ren, B., Diao, Z., Chen, Y., Qiao, Q., & Liu, X. (2016). Physicochemical properties and intestinal protective effect of ultra-micro ground insoluble dietary fibre from carrot pomace. Food and Function, 7(9), 3902–3909. https://doi.org/10.1039/c6fo00665e

    Article  CAS  PubMed  Google Scholar 

  • Marx, M., Stuparic, M., Schieber, A., & Carle, R. (2003). Effects of thermal processing on trans–cis-isomerization of b-carotene in carrot juices and carotenecontaining preparations. Food Chemistry, 83, 609–617.

    Article  CAS  Google Scholar 

  • Mercier, J., Ponnampalam, R., Berard, L. S., & Arul, J. (1990). Polyacetylene content and UV-induced 6-methoxymellein accumulation in carrot cultivars. Journal of the Science of Food and Agriculture, 51, 507–516.

    Article  Google Scholar 

  • Mirheli, M., & Taghian Dinani, S. (2018). Extraction of β-carotene pigment from carrot processing waste using ultrasonic-shaking incubation method. Journal of Food Measurement and Characterization, 12(3), 1818–1828. https://doi.org/10.1007/s11694-018-9796-2

    Article  Google Scholar 

  • Olsson, K., & Svensson, R. J. (1996). The influence of polyacetylenes on the susceptibility of carrots to storage diseases. Journal of Phytopathology, 144, 441–447.

    Article  CAS  Google Scholar 

  • Prabhu, A., Abdul, K., & Rekha, P. (2015). Isolation and Purification of Lutein from Indian Spinach Basella alba. Res. J. Pharm. Technol., 8, 1379–1382.

    Article  Google Scholar 

  • Quijano-ortega, N., Fuenmayor, C. A., & Zuluaga-dominguez, C. (2020). Applied sciences FTIR-ATR spectroscopy combined with multivariate regression modeling as a preliminary approach for carotenoids determination in Cucurbita spp. Applied Sciences, 1–11.

  • Saad, M. S. (1999). Quantitative analysis of Palm carotene using FTIR-NIR. Journal of the American Oil Chemist Society., 76(2), 249–254.

    Article  Google Scholar 

  • Scouten, A. J., & Beuchat, L. R. (2002). Combined effects of chemical, heat and ultrasound treatments to kill Salmonella and Escherichia coli O157:H7 on alfalfa seeds. Journal of Applied Microbiology, 92(4), 668–674. https://doi.org/10.1046/j.1365-2672.2002.01571.x

    Article  CAS  PubMed  Google Scholar 

  • Tansey, F., Gormley, R., & Butler, F. (2010). The effect of freezing compared with chilling on selected physico-chemical and sensory properties of sous vide cooked carrots. Innovative Food Science and Emerging Technologies, 11(1), 137–145. https://doi.org/10.1016/j.ifset.2009.11.001

    Article  CAS  Google Scholar 

  • Torkova, A., Lisitskaya, K., Filimonov, I., Glazunova, O., Kachalova, G., Golubev, V., & Fedorova, T. (2018). Physicochemical and functional properties of cucurbita maxima pumpkin pectin and commercial citrus and apple pectins: A comparative evaluation. PLoS ONE, 13, e0204261.

    Article  Google Scholar 

  • Waldron, K., Smith, A., Parr, A., Ng, A., & Parker, M. (1997). New approaches to understanding and controlling cell separation in relation to fruit and vegetable texture. Trends in Food Science & Technology, 8, 213–221.

    Article  CAS  Google Scholar 

  • Zidorn, C., Jöhrer, K., Ganzera, M., Schubert, B., Sigmund, E. M., Mader, J., Greil, R., Ellmerer, E. P., & Stuppner, H. (2005). Polyacetylenes from the apiaceae vegetables carrot, celery, fennel, parsley, and parsnip and their cytotoxic activities. Journal of Agricultural and Food Chemistry, 53(7), 2518–2523. https://doi.org/10.1021/jf048041s

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Sincere thanks to Prof. Loong-Tak Lim (Food Science, University of Guelph) for permitting us to use the lab equipment and to our industry partner Smith Gardens for providing the raw material for the research study.

Funding

The authors received financial support from the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) through Quebec-Ontario Cooperation for Agri-Food Research Competition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gagan Jyot Kaur.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, G.J., Morden, K., Orsat, V. et al. Application of Novel Processing Method (Multiple-Pass Ultrasonication with Mechanical Homogenization) for Producing Puree from Processed Carrot Discards. Food Bioprocess Technol 15, 2237–2251 (2022). https://doi.org/10.1007/s11947-022-02864-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02864-7

Keywords

Navigation