Skip to main content
Log in

Thermal Degradation of Antioxidant Compounds: Effects of Parameters, Thermal Degradation Kinetics, and Formulation Strategies

  • Review Article
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Stability of antioxidant compounds (AC) is always a challenging aspect in the food industry. AC, by nature, can be easily degraded under exposure of different parameters, predominantly high temperature during food processing. The thermal degradation of AC greatly impedes their nutritional values. However, it is rather surprising that only little attentions are paid concerning the thermal degradation of AC. Therefore, it is of great interest to describe the potential preservation approaches that reduce the thermal degradation rate of the AC. This review presents the effects of parameters affecting the degradation of AC, as well as an update of recent studies focused on the modeling of thermal degradation kinetics of AC. Our efforts encompass the discussion of numerous formulation strategies to improve the thermal stability of AC. In particular, literature compiled in this review highlight the potential of using various formulation strategies like emulsion, cyclodextrin, liposome, hydrogel, solid lipid nanoparticles, and natural deep eutectic solvent to effectively preserve the AC from thermal degradation. These technologies are efficient and reliable in improving the thermal stability of AC. Interestingly, the use of natural deep eutectic solvent holds great promise in enhancing the thermal stability of AC and its application in stabilizing the AC shall be further explored in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguiar, J., Estevinho, B. N., & Santos, L. (2016). Microencapsulation of natural antioxidants for food application – the specific case of coffee antioxidants – a review. Trends in Food Science & Technology, 58, 21–39. https://doi.org/10.1016/j.tifs.2016.10.012

    Article  CAS  Google Scholar 

  • Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2), 105–121. https://doi.org/10.1016/j.jare.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  • Ajeeshkumar, K., Aneesh, P. A., Raju, N., Suseela, M., Ravishankar, C., & Benjakul, S. (2021). Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review. Comprehensive Reviews in Food Science and Food Safety, 20, 1280–1306. https://doi.org/10.1111/1541-4337.12725

    Article  CAS  PubMed  Google Scholar 

  • Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200–214. https://doi.org/10.1016/j.crfs.2021.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali, A., Chong, C. H., Mah, S. H., Abdullah, L. C., Choong, T. S., & Chua, B. L. (2018). Impact of storage conditions on the stability of predominant phenolic constituents and antioxidant activity of dried Piper betle extracts. Molecules. https://doi.org/10.3390/molecules23020484

    Article  PubMed  PubMed Central  Google Scholar 

  • Aprodu, I., Milea, ȘA., Enachi, E., Râpeanu, G., Bahrim, G. E., & Stănciuc, N. (2020). Thermal degradation kinetics of anthocyanins extracted from purple maize flour extract and the effect of heating on selected biological functionality. Foods, 9(11), 1593.

    Article  Google Scholar 

  • Asaithambi, N., Singh, S. K., & Singha, P. (2021). Current status of non-thermal processing of probiotic foods: A review. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2021.110567

    Article  Google Scholar 

  • Attia, M., Essa, E. A., Zaki, R. M., & Elkordy, A. A. (2020). An overview of the antioxidant effects of ascorbic acid and alpha lipoic acid (in liposomal forms) as adjuvant in cancer treatment. Antioxidants. https://doi.org/10.3390/antiox9050359

    Article  PubMed  PubMed Central  Google Scholar 

  • Babaoglu, H., Bayrak, A., Özdemir, N., & Ozgun, N. (2017). Encapsulation of clove essential oil in hydroxypropyl beta-cyclodextrin for characterization, controlled release, and antioxidant activity. Journal of Food Processing and Preservation, 41, e13202. https://doi.org/10.1111/jfpp.13202

    Article  CAS  Google Scholar 

  • Badin, E., Quevedo-Leon, R., Ibarz, A., Ribotta, P., & Lespinard, A. (2021). Kinetic modeling of thermal degradation of color, lycopene, and ascorbic acid in crushed tomato. Food and Bioprocess Technology, 14(2), 324–333.

    Article  CAS  Google Scholar 

  • Beelders, T., de Beer, D., Ferreira, D., Kidd, M., & Joubert, E. (2017). Thermal stability of the functional ingredients, glucosylated benzophenones and xanthones of honeybush (Cyclopia genistoides), in an aqueous model solution. Food Chemistry, 233, 412–421. https://doi.org/10.1016/j.foodchem.2017.04.083

    Article  CAS  PubMed  Google Scholar 

  • Bolea, C., Turturică, M., Stănciuc, N., & Vizireanu, C. (2016). Thermal degradation kinetics of bioactive compounds from black rice flour (Oryza sativa L.) extracts. Journal of Cereal Science, 71, 160–166. https://doi.org/10.1016/j.jcs.2016.08.010

    Article  CAS  Google Scholar 

  • Caritá, A. C., Resende de Azevedo, J., Vinícius Buri, M., Bolzinger, M.-A., Chevalier, Y., Riske, K. A., & Ricci Leonardi, G. (2021). Stabilization of vitamin C in emulsions of liquid crystalline structures. International Journal of Pharmaceutics, 592, 120092. https://doi.org/10.1016/j.ijpharm.2020.120092

    Article  CAS  PubMed  Google Scholar 

  • Celebioglu, A., & Uyar, T. (2017). Antioxidant vitamin E/cyclodextrin inclusion complex electrospun nanofibers: Enhanced water solubility, prolonged shelf life, and photostability of vitamin E. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.7b01562

    Article  PubMed  Google Scholar 

  • Celebioglu, A., & Uyar, T. (2019). Encapsulation and stabilization of α-lipoic acid in cyclodextrin inclusion complex electrospun nanofibers: Antioxidant and fast-dissolving α-lipoic acid/cyclodextrin nanofibrous webs. Journal of Agricultural and Food Chemistry, 67(47), 13093–13107. https://doi.org/10.1021/acs.jafc.9b05580

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira, M. Â., Pinheiro, A. C., Ramos, O. L., Silva, H., Bourbon, A. I., & Vicente, A. A. (2017). Advances in food nanotechnology. In Emerging nanotechnologies in food science (pp. 11–38): Elsevier.

  • Chaaban, H., Ioannou, I., Paris, C., Charbonnel, C., & Ghoul, M. (2017). The photostability of flavanones, flavonols and flavones and evolution of their antioxidant activity. Journal of Photochemistry and Photobiology a: Chemistry, 336, 131–139. https://doi.org/10.1016/j.jphotochem.2016.12.027

    Article  CAS  Google Scholar 

  • Chen, H., & Zhong, Q. (2015). Thermal and UV stability of β-carotene dissolved in peppermint oil microemulsified by sunflower lecithin and Tween 20 blend. Food Chemistry, 174, 630–636. https://doi.org/10.1016/j.foodchem.2014.11.116

    Article  CAS  PubMed  Google Scholar 

  • Costa, H. C. B., Silva, D. O., & Vieira, L. G. M. (2018). Physical properties of açai-berry pulp and kinetics study of its anthocyanin thermal degradation. Journal of Food Engineering, 239, 104–113. https://doi.org/10.1016/j.jfoodeng.2018.07.007

    Article  CAS  Google Scholar 

  • Dai, Y., Verpoorte, R., & Choi, Y. H. (2014). Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chemistry, 159, 116–121. https://doi.org/10.1016/j.foodchem.2014.02.155

    Article  CAS  PubMed  Google Scholar 

  • Duan, L., Dou, L.-L., Guo, L., Li, P., & Liu, E. H. (2016). Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products. ACS Sustainable Chemistry & Engineering, 4(4), 2405–2411.

    Article  CAS  Google Scholar 

  • Duong, V. -A., Nguyen, T. -T. -L., & Maeng, H. -J. (2020). Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method. Molecules (Basel, Switzerland), 25(20), 4781. https://doi.org/10.3390/molecules25204781

    Article  CAS  Google Scholar 

  • Feng, Y., Xu, B., Yagoub, A. E. G. A., Ma, H., Sun, Y., Xu, X., & Zhou, C. (2021). Role of drying techniques on physical, rehydration, flavor, bioactive compounds and antioxidant characteristics of garlic. Food Chemistry, 343, 128404. https://doi.org/10.1016/j.foodchem.2020.128404

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Romero, E., Chavez-Quintana, S. G., Siche, R., Castro-Alayo, E. M., & Cardenas-Toro, F. P. (2020). The kinetics of total phenolic content and monomeric flavan-3-ols during the roasting process of Criollo cocoa. Antioxidants, 9(2), 146.

    Article  Google Scholar 

  • Fischer, U. A., Carle, R., & Kammerer, D. R. (2013). Thermal stability of anthocyanins and colourless phenolics in pomegranate (Punica granatum L.) juices and model solutions. Food Chemistry, 138(2–3), 1800–1809.

    Article  CAS  Google Scholar 

  • Flieger, J., Flieger, W., Baj, J., & Maciejewski, R. (2021). Antioxidants: Classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles. Materials (Basel, Switzerland), 14(15), 4135. https://doi.org/10.3390/ma14154135

    Article  CAS  Google Scholar 

  • Fratianni, A., Niro, S., Messia, M. C., Cinquanta, L., Panfili, G., Albanese, D., & Di Matteo, M. (2017). Kinetics of carotenoids degradation and furosine formation in dried apricots (Prunus armeniaca L.). Food Research International, 99, 862–867. https://doi.org/10.1016/j.foodres.2016.12.009

    Article  CAS  PubMed  Google Scholar 

  • Goulas, V., & Hadjisolomou, A. (2019). Dynamic changes in targeted phenolic compounds and antioxidant potency of carob fruit (Ceratonia siliqua L.) products during in vitro digestion. LWT, 101, 269–275. https://doi.org/10.1016/j.lwt.2018.11.003

    Article  CAS  Google Scholar 

  • Guo, Y., Shen, L. -X., Lu, Y. -F., Li, H. -Y., Min, K., Li, L. -F., & Zheng, X. (2016). Preparation of rutin-liposome drug delivery systems and evaluation on their in vitro antioxidant activity. Chinese Herbal Medicines, 8(4), 371–375. https://doi.org/10.1016/S1674-6384(16)60065-5

    Article  Google Scholar 

  • Gupta, A., Eral, H. B., Hatton, T. A., & Doyle, P. S. (2016). Nanoemulsions: Formation, properties and applications. Soft Matter, 12(11), 2826–2841.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Sood, S., Agarwal, S., Saini, A. K., & Pathania, D. (2018). Antioxidant activity and controlled drug delivery potential of tragacanth gum-cl-poly (lactic acid-co-itaconic acid) hydrogel. International Journal of Biological Macromolecules, 107, 2534–2543. https://doi.org/10.1016/j.ijbiomac.2017.10.138

    Article  CAS  PubMed  Google Scholar 

  • Harwansh, R. K., Deshmukh, R., & Rahman, M. A. (2019). Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. Journal of Drug Delivery Science and Technology, 51, 224–233. https://doi.org/10.1016/j.jddst.2019.03.006

    Article  CAS  Google Scholar 

  • Henríquez, C., Córdova, A., Almonacid, S., & Saavedra, J. (2014). Kinetic modeling of phenolic compound degradation during drum-drying of apple peel by-products. Journal of Food Engineering, 143, 146–153.

    Article  Google Scholar 

  • Hernández-Hernández, H. M., Moreno-Vilet, L., & Villanueva-Rodríguez, S. J. (2019). Current status of emerging food processing technologies in Latin America: Novel non-thermal processing. Innovative Food Science & Emerging Technologies, 58, 102233. https://doi.org/10.1016/j.ifset.2019.102233

    Article  Google Scholar 

  • Ho, S., Thoo, Y. Y., Young, D. J., & Siow, L. F. (2017). Inclusion complexation of catechin by β-cyclodextrins: Characterization and storage stability. LWT, 86, 555–565. https://doi.org/10.1016/j.lwt.2017.08.041

    Article  CAS  Google Scholar 

  • Ioannou, I., Chekir, L., & Ghoul, M. (2020). Effect of heat treatment and light exposure on the antioxidant activity of flavonoids. Processes, 8(9), 1078.

    Article  CAS  Google Scholar 

  • Ioannou, I., Hafsa, I., Hamdi, S., Charbonnel, C., & Ghoul, M. (2012). Review of the effects of food processing and formulation on flavonol and anthocyanin behaviour. Journal of Food Engineering, 111(2), 208–217. https://doi.org/10.1016/j.jfoodeng.2012.02.006

    Article  CAS  Google Scholar 

  • Jeliński, T., Przybyłek, M., & Cysewski, P. (2019). Natural deep eutectic solvents as agents for improving solubility, stability and delivery of curcumin. Pharmaceutical Research, 36(8), 116–116. https://doi.org/10.1007/s11095-019-2643-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, T., Mao, Y., Sui, L., Yang, N., Li, S., Zhu, Z., & He, Y. (2019). Degradation of anthocyanins and polymeric color formation during heat treatment of purple sweet potato extract at different pH. Food Chemistry, 274, 460–470.

    Article  CAS  Google Scholar 

  • Kale, S., & Deore, S. (2016). Emulsion micro emulsion and nano emulsion: A review. Systematic Reviews in Pharmacy, 8, 39–47. https://doi.org/10.5530/srp.2017.1.8

    Article  CAS  Google Scholar 

  • Kellil, A., Grigorakis, S., Loupassaki, S., & Makris, D. P. (2021). Empirical kinetic modelling and mechanisms of quercetin thermal degradation in aqueous model systems: Effect of pH and addition of antioxidants. Applied Sciences, 11(6), 2579.

    Article  CAS  Google Scholar 

  • Kim, A.-N., Kim, H.-J., Chun, J., Heo, H. J., Kerr, W. L., & Choi, S.-G. (2018). Degradation kinetics of phenolic content and antioxidant activity of hardy kiwifruit (Actinidia arguta) puree at different storage temperatures. LWT, 89, 535–541.

    Article  CAS  Google Scholar 

  • Kim, A. -N., Lee, K. -Y., Kim, B. G., Cha, S. W., Jeong, E. J., Kerr, W. L., & Choi, S. -G. (2021). Thermal processing under oxygen-free condition of blueberry puree: Effect on anthocyanin, ascorbic acid, antioxidant activity, and enzyme activities. Food Chemistry, 342, 128345. https://doi.org/10.1016/j.foodchem.2020.128345

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Zahi, M. R., Yuan, Q., Tian, F., & Liang, H. (2016). Preparation and stability of astaxanthin solid lipid nanoparticles based on stearic acid. European Journal of Lipid Science and Technology, 118(4), 592–602.

    Article  CAS  Google Scholar 

  • Ling, B., Tang, J., Kong, F., Mitcham, E., & Wang, S. (2015). Kinetics of food quality changes during thermal processing: A review. Food and Bioprocess Technology, 8(2), 343–358.

    Article  CAS  Google Scholar 

  • Ling, J. K. U., Chan, Y. S., & Nandong, J. (2021). Degradation kinetics modeling of antioxidant compounds from the wastes of Mangifera pajang fruit in aqueous and choline chloride/ascorbic acid natural deep eutectic solvent. Journal of Food Engineering, 294, 110401. https://doi.org/10.1016/j.jfoodeng.2020.110401

    Article  CAS  Google Scholar 

  • Ling, J. K. U., Chan, Y. S., Nandong, J., Chin, S. F., & Ho, B. K. (2020). Formulation of choline chloride/ascorbic acid natural deep eutectic solvent: Characterization, solubilization capacity and antioxidant property. LWT, 133, 110096. https://doi.org/10.1016/j.lwt.2020.110096

    Article  CAS  Google Scholar 

  • Ling, J. K. U., Nandong, J., & Chan, Y. S. (2022). Generalized multi-scale kinetic model for data-driven modelling: Mangifera pajang antioxidant degradation in choline chloride/ascorbic acid natural deep eutectic solvent. Journal of Food Engineering, 312, 110741. https://doi.org/10.1016/j.jfoodeng.2021.110741

    Article  CAS  Google Scholar 

  • Liu, B., Li, W., Nguyen, T. A., & Zhao, J. (2012). Empirical, thermodynamic and quantum-chemical investigations of inclusion complexation between flavanones and (2-hydroxypropyl)-cyclodextrins. Food Chemistry, 134(2), 926–932. https://doi.org/10.1016/j.foodchem.2012.02.207

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Liu, D., Zhu, L., Gan, Q., & Le, X. (2015). Temperature-dependent structure stability and in vitro release of chitosan-coated curcumin liposome. Food Research International, 74, 97–105. https://doi.org/10.1016/j.foodres.2015.04.024

    Article  CAS  PubMed  Google Scholar 

  • Loftsson, T., & Brewster, M. E. (2012). Cyclodextrins as functional excipients: Methods to enhance complexation efficiency. Journal of Pharmaceutical Sciences, 101(9), 3019–3032. https://doi.org/10.1002/jps.23077

    Article  CAS  PubMed  Google Scholar 

  • Longo, E., Morozova, K., & Scampicchio, M. (2017). Effect of light irradiation on the antioxidant stability of oleuropein. Food Chemistry, 237, 91–97. https://doi.org/10.1016/j.foodchem.2017.05.099

    Article  CAS  PubMed  Google Scholar 

  • Lopez de Dicastillo, C., López-Carballo, G., Gavara, R., Galet, V., Guarda, A., & Galotto, M. (2019). Improving polyphenolic thermal stability of Aristotelia chilensis fruit extract by encapsulation within electrospun cyclodextrin capsules. Journal of Food Processing and Preservation. https://doi.org/10.1111/jfpp.14044

    Article  Google Scholar 

  • Martínez-Delgado, A. A., Khandual, S., & Villanueva-Rodríguez, S. J. (2017). Chemical stability of astaxanthin integrated into a food matrix: Effects of food processing and methods for preservation. Food Chemistry, 225, 23–30.

    Article  Google Scholar 

  • McClements, D. J. (2004). Food emulsions: Principles, practices, and techniques. CRC Press.

    Book  Google Scholar 

  • McClements, D. J., Decker, E. A., Park, Y., & Weiss, J. (2009). Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Critical Reviews in Food Science and Nutrition, 49(6), 577–606.

    Article  CAS  Google Scholar 

  • Mehrad, B., Ravanfar, R., Licker, J., Regenstein, J. M., & Abbaspourrad, A. (2018). Enhancing the physicochemical stability of β-carotene solid lipid nanoparticle (SLNP) using whey protein isolate. Food Research International, 105, 962–969. https://doi.org/10.1016/j.foodres.2017.12.036

    Article  CAS  PubMed  Google Scholar 

  • Mustafa, N. R., Spelbos, V. S., Witkamp, G. -J., Verpoorte, R., & Choi, Y. H. (2021). Solubility and stability of some pharmaceuticals in natural deep eutectic solvents-based formulations. Molecules (Basel, Switzerland), 26(9), 2645. https://doi.org/10.3390/molecules26092645

    Article  CAS  Google Scholar 

  • Neha, K., Haider, M. R., Pathak, A., & Yar, M. S. (2019). Medicinal prospects of antioxidants: A review. European Journal of Medicinal Chemistry, 178, 687–704. https://doi.org/10.1016/j.ejmech.2019.06.010

    Article  CAS  PubMed  Google Scholar 

  • Nunes, L., & Tavares, G. M. (2019). Thermal treatments and emerging technologies: Impacts on the structure and techno-functional properties of milk proteins. Trends in Food Science & Technology, 90, 88–99. https://doi.org/10.1016/j.tifs.2019.06.004

    Article  CAS  Google Scholar 

  • Oancea, A.-M., Turturică, M., Bahrim, G., Râpeanu, G., & Stănciuc, N. (2017). Phytochemicals and antioxidant activity degradation kinetics during thermal treatments of sour cherry extract. LWT - Food Science and Technology, 82, 139–146. https://doi.org/10.1016/j.lwt.2017.04.026

    Article  CAS  Google Scholar 

  • Oroian, M., & Escriche, I. (2015). Antioxidants: Characterization, natural sources, extraction and analysis. Food Research International, 74, 10–36. https://doi.org/10.1016/j.foodres.2015.04.018

    Article  CAS  PubMed  Google Scholar 

  • Paczkowska, M., Mizera, M., Szymanowska-Powałowska, D., Lewandowska, K., Błaszczak, W., Gościańska, J., & Cielecka-Piontek, J. (2016). β-Cyclodextrin complexation as an effective drug delivery system for meropenem. European Journal of Pharmaceutics and Biopharmaceutics, 99, 24–34. https://doi.org/10.1016/j.ejpb.2015.10.013

    Article  CAS  PubMed  Google Scholar 

  • Patras, A., Brunton, N. P., O’Donnell, C., & Tiwari, B. (2010). Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Science & Technology, 21(1), 3–11.

    Article  CAS  Google Scholar 

  • Pavoni, L., Perinelli, D. R., Bonacucina, G., Cespi, M., & Palmieri, G. F. (2020). An overview of micro- and nanoemulsions as vehicles for essential oils: Formulation, preparation and stability. Nanomaterials (Basel, Switzerland), 10(1), 135. https://doi.org/10.3390/nano10010135

    Article  CAS  Google Scholar 

  • Peron, D. V., Fraga, S., & Antelo, F. (2017). Thermal degradation kinetics of anthocyanins extracted from juçara (Euterpe edulis Martius) and “Italia” grapes (Vitis vinifera L.), and the effect of heating on the antioxidant capacity. Food chemistry, 232, 836–840. https://doi.org/10.1016/j.foodchem.2017.04.088

    Article  CAS  PubMed  Google Scholar 

  • Petrou, A. L., Petrou, P. L., Ntanos, T., & Liapis, A. (2018). A possible role for singlet oxygen in the degradation of various antioxidants. A meta-analysis and review of literature data. Antioxidants, 7(3), 35.

  • Pineda-Vadillo, C., Nau, F., Dubiard, C. G., Cheynier, V., Meudec, E., Sanz-Buenhombre, M., & Dupont, D. (2016). In vitro digestion of dairy and egg products enriched with grape extracts: Effect of the food matrix on polyphenol bioaccessibility and antioxidant activity. Food Research International, 88, 284–292. https://doi.org/10.1016/j.foodres.2016.01.029

    Article  CAS  Google Scholar 

  • Pu, C., Tang, W., Li, X., Li, M., & Sun, Q. (2019). Stability enhancement efficiency of surface decoration on curcumin-loaded liposomes: Comparison of guar gum and its cationic counterpart. Food Hydrocolloids, 87, 29–37. https://doi.org/10.1016/j.foodhyd.2018.07.039

    Article  CAS  Google Scholar 

  • Pund, S., Joshi, A., & Patravale, V. (2016). Improving bioavailability of nutraceuticals by nanoemulsification. In Nutraceuticals, nanotechnology in the agri-food industry (vol. 4). Harrogate: Elsevier Inc.

  • Putnik, P., Kresoja, Ž, Bosiljkov, T., Režek Jambrak, A., Barba, F. J., Lorenzo, J. M., & Bursać Kovačević, D. (2019). Comparing the effects of thermal and non-thermal technologies on pomegranate juice quality: A review. Food Chemistry, 279, 150–161. https://doi.org/10.1016/j.foodchem.2018.11.131

    Article  CAS  PubMed  Google Scholar 

  • Rawson, A., Patras, A., Tiwari, B. K., Noci, F., Koutchma, T., & Brunton, N. (2011). Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: Review of recent advances. Food Research International, 44(7), 1875–1887. https://doi.org/10.1016/j.foodres.2011.02.053

    Article  CAS  Google Scholar 

  • Reyes, L. F., & Cisneros-Zevallos, L. (2007). Degradation kinetics and colour of anthocyanins in aqueous extracts of purple- and red-flesh potatoes (Solanum tuberosum L.). Food Chemistry, 100(3), 885–894.

    Article  CAS  Google Scholar 

  • Ruengdech, A., & Siripatrawan, U. (2021). Application of catechin nanoencapsulation with enhanced antioxidant activity in high pressure processed catechin-fortified coconut milk. LWT, 140, 110594. https://doi.org/10.1016/j.lwt.2020.110594

    Article  CAS  Google Scholar 

  • Sadilova, E., Carle, R., & Stintzing, F. C. (2007). Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Molecular Nutrition & Food Research, 51(12), 1461–1471.

    Article  CAS  Google Scholar 

  • Shashirekha, M., Mallikarjuna, S., & Rajarathnam, S. (2015). Status of bioactive compounds in foods, with focus on fruits and vegetables. Critical Reviews in Food Science and Nutrition, 55(10), 1324–1339.

    Article  CAS  Google Scholar 

  • Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry. https://doi.org/10.1016/j.foodchem.2022.132531

    Article  PubMed  Google Scholar 

  • Skopinska-Wisniewska, J., Tuszynska, M., & Olewnik-Kruszkowska, E. (2021). Comparative study of gelatin hydrogels modified by various cross-linking agents. Materials, 14(2), 396.

    Article  CAS  Google Scholar 

  • Song, J., Wei, Q., Wang, X., Li, D., Liu, C., Zhang, M., & Meng, L. (2018). Degradation of carotenoids in dehydrated pumpkins as affected by different storage conditions. Food Research International, 107, 130–136. https://doi.org/10.1016/j.foodres.2018.02.024

    Article  CAS  PubMed  Google Scholar 

  • Sui, X., Dong, X., & Zhou, W. (2014). Combined effect of pH and high temperature on the stability and antioxidant capacity of two anthocyanins in aqueous solution. Food Chemistry, 163, 163–170.

    Article  CAS  Google Scholar 

  • Syamila, M., Gedi, M. A., Briars, R., Ayed, C., & Gray, D. A. (2019). Effect of temperature, oxygen and light on the degradation of β-carotene, lutein and α-tocopherol in spray-dried spinach juice powder during storage. Food Chemistry, 284, 188–197. https://doi.org/10.1016/j.foodchem.2019.01.055

    Article  CAS  PubMed  Google Scholar 

  • Thanyacharoen, T., Chuysinuan, P., Techasakul, S., Nooeaid, P., & Ummartyotin, S. (2018). Development of a gallic acid-loaded chitosan and polyvinyl alcohol hydrogel composite: Release characteristics and antioxidant activity. International Journal of Biological Macromolecules, 107, 363–370. https://doi.org/10.1016/j.ijbiomac.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  • Tian, H., Lu, Z., Li, D., & Hu, J. (2018). Preparation and characterization of citral-loaded solid lipid nanoparticles. Food Chemistry, 248, 78–85. https://doi.org/10.1016/j.foodchem.2017.11.091

    Article  CAS  PubMed  Google Scholar 

  • Trapani, A., Mandracchia, D., Tripodo, G., Gioia, S., Castellani, S., Cioffi, N., & Conese, M. (2019). Solid lipid nanoparticles made of self-emulsifying lipids for efficient encapsulation of hydrophilic substances (Vol. 2145).

  • Turturică, M., Stănciuc, N., Bahrim, G., & Râpeanu, G. (2016). Effect of thermal treatment on phenolic compounds from plum (Prunus domestica) extracts – A kinetic study. Journal of Food Engineering, 171, 200–207. https://doi.org/10.1016/j.jfoodeng.2015.10.024

    Article  CAS  Google Scholar 

  • Van Boekel, M. A. (2008). Kinetic modeling of food quality: A critical review. Comprehensive Reviews in Food Science and Food Safety, 7(1), 144–158.

    Article  Google Scholar 

  • Volden, J., Borge, G. I. A., Bengtsson, G. B., Hansen, M., Thygesen, I. E., & Wicklund, T. (2008). Effect of thermal treatment on glucosinolates and antioxidant-related parameters in red cabbage (Brassica oleracea L. ssp. capitata f. rubra). Food Chemistry, 109(3), 595–605. https://doi.org/10.1016/j.foodchem.2008.01.010

    Article  CAS  Google Scholar 

  • Wang, J., Yang, X.- H., Mujumdar, A. S., Fang, X.- M., Zhang, Q., Zheng, Z.- A., & Xiao, H.- W. (2018). Effects of high-humidity hot air impingement blanching (HHAIB) pretreatment on the change of antioxidant capacity, the degradation kinetics of red pigment, ascorbic acid in dehydrated red peppers during storage. Food Chemistry, 259, 65–72. https://doi.org/10.1016/j.foodchem.2018.03.123

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Parvathaneni, V., Shukla, S. K., Kanabar, D. D., Muth, A., & Gupta, V. (2020). Cyclodextrin complexation for enhanced stability and non-invasive pulmonary delivery of resveratrol—applications in non-small cell lung cancer treatment. An Official Journal of the American Association of Pharmaceutical Scientists, 21(5), 183. https://doi.org/10.1208/s12249-020-01724-x

    Article  CAS  Google Scholar 

  • Xiao, Y.-D., Huang, W.-Y., Li, D.-J., Song, J.-F., Liu, C.-Q., Wei, Q.-y, ... Yang, Q.-m. (2018). Thermal degradation kinetics of all-trans and cis-carotenoids in a light-induced model system. Food Chemistry, 239, 360–368. https://doi.org/10.1016/j.foodchem.2017.06.107

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y. -Q., Yu, P., & Zhou, W. (2019). Combined effect of pH and temperature on the stability and antioxidant capacity of epigallocatechin gallate (EGCG) in aqueous system. Journal of Food Engineering, 250, 46–54. https://doi.org/10.1016/j.jfoodeng.2019.01.016

    Article  CAS  Google Scholar 

  • Zareba, M., Szewczyk, G., Sarna, T., Hong, L., Simon, J. D., Henry, M. M., & Burke, J. M. (2006). Effects of photodegradation on the physical and antioxidant properties of melanosomes isolated from retinal pigment epithelium. Photochemistry and Photobiology, 82(4), 1024–1029. https://doi.org/10.1562/2006-03-08-ra-836

    Article  CAS  PubMed  Google Scholar 

  • Zarei, M., Fazlara, A., & Tulabifard, N. (2019). Effect of thermal treatment on physicochemical and antioxidant properties of honey. Heliyon, 5(6), e01894. https://doi.org/10.1016/j.heliyon.2019.e01894

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, M., Chen, H., Li, J., Pei, Y., & Liang, Y. (2010). Antioxidant properties of tartary buckwheat extracts as affected by different thermal processing methods. LWT - Food Science and Technology, 43(1), 181–185. https://doi.org/10.1016/j.lwt.2009.06.020

    Article  CAS  Google Scholar 

  • Zhang, W., Mullaney, E. J., & Lei, X. G. (2007). Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase. Applied and Environmental Microbiology, 73(9), 3069–3076.

    Article  CAS  Google Scholar 

  • Zhang, Y., Sun, Y., Zhang, H., Mai, Q., Zhang, B., Li, H., & Deng, Z. (2020). The degradation rules of anthocyanins from eggplant peel and antioxidant capacity in fortified model food system during the thermal treatments. Food Bioscience, 38, 100701. https://doi.org/10.1016/j.fbio.2020.100701

    Article  CAS  Google Scholar 

  • Zhang, Z., Zhang, R., & McClements, D. J. (2016). Encapsulation of β-carotene in alginate-based hydrogel beads: Impact on physicochemical stability and bioaccessibility. Food Hydrocolloids, 61, 1–10. https://doi.org/10.1016/j.foodhyd.2016.04.036

    Article  CAS  Google Scholar 

  • Zhou, F., Xu, T., Zhao, Y., Song, H., Zhang, L., Wu, X., & Lu, B. (2018). Chitosan-coated liposomes as delivery systems for improving the stability and oral bioavailability of acteoside. Food Hydrocolloids, 83, 17–24. https://doi.org/10.1016/j.foodhyd.2018.04.040

    Article  CAS  Google Scholar 

  • Zou, Z., Xi, W., Hu, Y., Nie, C., & Zhou, Z. (2016). Antioxidant activity of citrus fruits. Food Chemistry, 196, 885–896. https://doi.org/10.1016/j.foodchem.2015.09.072

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Curtin University Malaysia for their financial support through the Curtin Malaysia Higher Degree Research (CMHDR) Grant. JJ acknowledges the support from CQM-Centro de Química da Madeira, University of Madeira and FCT-Fundação para a Ciência e a Tecnologia.

Author information

Authors and Affiliations

Authors

Contributions

JLKU: conceptualization, writing—original draft, writing—review and editing, visualization; SJH: writing—original draft; JJ: writing—original draft; CYS: conceptualization, writing—review and editing, supervision; JN: conceptualization, writing—review and editing, supervision.

Corresponding author

Correspondence to Yen San Chan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, J.K.U., Sam, J.H., Jeevanandam, J. et al. Thermal Degradation of Antioxidant Compounds: Effects of Parameters, Thermal Degradation Kinetics, and Formulation Strategies. Food Bioprocess Technol 15, 1919–1935 (2022). https://doi.org/10.1007/s11947-022-02797-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02797-1

Keywords

Navigation