Skip to main content
Log in

Ultrasound-Assisted Detoxification of Ochratoxin A: Comparative Study of Cell Wall Structure, Hydrophobicity, and Toxin Binding Capacity of Single and Co-culture Lactic Acid Bacteria

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The present study aimed to evaluate the binding capacity and stability of ochratoxin A (10 µg/kg; OTA) by single and co-culture Lactobacillus acidophilus + Lactobacillus rhamnosus in various modes including viable, heat-, and ultrasound-inactivated cells as well as a combination of viable + heat- or ultrasound-inactivated cells. The stability of OTA binding on native and modified lactic acid bacteria (LAB) surface was conducted after washing with solvent. The highest OTA adsorption capacity and stability (μg/kg) were obtained after co-culture L. acidophilus + L. rhamnosus in the following order: ultrasound-treated (8.418 and 7.829) > viable + ultrasound-treated (8.376 and 7.204) > heat-treated (7.588 and 6.987) > viable + heat-treated (7.536 and 6.483) > viable (7.425 and 5.157). The surface hydrophobicity obtained by spectrophotometry (%) enhanced from 40.5% in viable to 71.9% and 60.6% in ultrasound and heat-treated L. acidophilus + L. rhamnosus. α-helix and β-turn structures in L. acidophilus + L. rhamnosus reduced to (20.7 and 22.6%) and (26.9 and 27.2%) further LAB inactivated by thermosensation and heating compared to α-helix and β-turn structures in viable LAB, respectively (16.1 and 26.1%). To prove that the reduction of the OTA by LAB caused a substantial reduction of their toxic performances, micronucleus (MN) experiments were carried out with human-derived hepatoma cell line cells. Indeed, a considerable decrease of OTA caused a substantial reduction of MN induction and the inhibition of the cell division rates (i.e., the decline of BNC formation) by the OTA was significantly reduced in the ultrasonicated L. acidophilus + L. rhamnosus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Research data are not shared.

Abbreviations

LAV:

Viable L. acidophilus

LRV:

Viable L. rhamnosus

LARV:

Viable L. acidophilus + L. rhamnosus

LAVH:

Viable + heat-treated L. acidophilus

LRVH:

Viable + heat-treated L. rhamnosus

LARVH:

Viable + heat-treated L. acidophilus + L. rhamnosus

LAH:

Heat-treated L. acidophilus

LRH:

Heat-treated L. rhamnosus

LARH:

Heat-treated L. acidophilus + L. rhamnosus

LAU:

Ultrasound-treated L. acidophilus

LRU:

Ultrasound-treated L. rhamnosus

LARU:

Ultrasound-treated L. acidophilus + L. rhamnosus

LAVU:

Viable + ultrasound-treated L. acidophilus

LRVU:

Viable + ultrasound-treated L. rhamnosus

LARVU:

Viable + ultrasound-treated L. acidophilus + L. rhamnosus

LAB:

Lactic acid bacteria

HepG2:

Human-derived hepatoma cell line

MN:

Micronucleus

HPLC:

High-performance liquid chromatography

PSOM:

Pseudo-second-order model

PFOM:

Pseudo-first-order model

IDM:

Weber and Morris intraparticle diffusion model

EM:

Elovich model

References

  • Abedi, E., & Hashemi, S. M. B. (2020). Lactic acid production–producing microorganisms and substrates sources-state of art. Heliyon, 6(10), e04974.

  • Abrunhosa, L., Paterson, R. R. M., & Venâncio, A. (2010). Biodegradation of ochratoxin A for food and feed decontamination. Toxins, 2(5), 1078–1099.

    Article  CAS  Google Scholar 

  • Armando, M. R., Pizzolitto, R. P., Dogi, C. A., Cristofolini, A., Merkis, C., Poloni, V., et al. (2012). Adsorption of ochratoxin A and zearalenone by potential probiotic Saccharomyces cerevisiae strains and its relation with cell wall thickness. Journal of Applied Microbiology, 113(2), 256–264.

    Article  CAS  Google Scholar 

  • Arzeni, C., Martínez, K., Zema, P., Arias, A., Pérez, O. E., & Pilosof, A. M. R. (2012). Comparative study of high intensity ultrasound effects on food proteins functionality. Journal of Food Engineering, 108(3), 463–472.

    Article  CAS  Google Scholar 

  • Belkacem-Hanfi, N., Fhoula, I., Semmar, N., Guesmi, A., Perraud-Gaime, I., Ouzari, H.-I., et al. (2014). Lactic acid bacteria against post-harvest moulds and ochratoxin A isolated from stored wheat. Biological Control, 76, 52–59.

    Article  CAS  Google Scholar 

  • Belova, V., Gorin, D. A., Shchukin, D. G., & Möhwald, H. (2011). Controlled effect of ultrasonic cavitation on hydrophobic/hydrophilic surfaces. ACS Applied Materials & Interfaces, 3(2), 417–425.

    Article  CAS  Google Scholar 

  • Bolognesi, C., & Hayashi, M. (2011). Micronucleus assay in aquatic animals. Mutagenesis, 26(1), 205–213.

    Article  CAS  Google Scholar 

  • Bryła, M., Ksieniewicz-Woźniak, E., Stępniewska, S., Modrzewska, M., Waśkiewicz, A., Szymczyk, K., & Szafrańska, A. (2021). Transformation of ochratoxin A during bread-making processes. Food Control, 125, 107950. https://doi.org/10.1016/j.foodcont.2021.107950

  • Chen, D., Chen, P., Cheng, Y., Peng, P., Liu, J., Ma, Y., et al. (2019). Deoxynivalenol decontamination in raw and germinating barley treated by plasma-activated water and intense pulsed light. Food and Bioprocess Technology, 12(2), 246–254.

    Article  CAS  Google Scholar 

  • Chen, W.-Y., Huang, H.-M., Lin, C.-C., Lin, F.-Y., & Chan, Y.-C. (2003). Effect of temperature on hydrophobic interaction between proteins and hydrophobic adsorbents: Studies by isothermal titration calorimetry and the van’t Hoff equation. Langmuir, 19(22), 9395–9403.

    Article  CAS  Google Scholar 

  • Del Prete, V., Rodriguez, H., Carrascosa, A. V., & de las RIVAS, B., Garcia-Moruno, E., & Munoz, R. (2007). In vitro removal of ochratoxin A by wine lactic acid bacteria. Journal of Food Protection, 70(9), 2155–2160.

    Article  Google Scholar 

  • Duarte, S. C., Pena, A., & Lino, C. M. (2010). A review on ochratoxin A occurrence and effects of processing of cereal and cereal derived food products. Food Microbiology, 27(2), 187–198.

    Article  CAS  Google Scholar 

  • Ehrlich, V., Darroudi, F., Uhl, M., Steinkellner, H., Gann, M., Majer, B. J., et al. (2002). Genotoxic effects of ochratoxin A in human-derived hepatoma (HepG2) cells. Food and Chemical Toxicology, 40(8), 1085–1090.

    Article  CAS  Google Scholar 

  • Feizollahi, E., & Roopesh, M. S. (2021). Degradation of zearalenone by atmospheric cold plasma: Effect of selected process and product factors. Food and Bioprocess Technology, 1–13.

  • Fuchs, S., Sontag, G., Stidl, R., Ehrlich, V., Kundi, M., & Knasmüller, S. (2008). Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food and Chemical Toxicology, 46(4), 1398–1407.

    Article  CAS  Google Scholar 

  • Ghofrani Tabari, D., Kermanshahi, H., Golian, A., & Majidzadeh Heravi, R. (2018). In vitro binding potentials of bentonite, yeast cell wall and lactic acid bacteria for aflatoxin B1 and ochratoxin A. Iranian Journal of Toxicology, 12(2), 7–13.

    Article  Google Scholar 

  • Hashemi, S. M. B., & Amiri, M. J. (2020). A comparative adsorption study of aflatoxin B1 and aflatoxin G1 in almond butter fermented by Lactobacillus fermentum and Lactobacillus delbrueckii subsp. lactis. LWT, 109500.

  • Hashemi, S. M. B., Shahidi, F., Mortazavi, S. A., Milani, E., & Eshaghi, Z. (2014). Potentially probiotic Lactobacillus strains from traditional Kurdish cheese. Probiotics and Antimicrobial Proteins, 6(1), 22–31.

    Article  CAS  Google Scholar 

  • Hathout, A. S., & Aly, S. E. (2014). Biological detoxification of mycotoxins: A review. Annals of Microbiology, 64(3), 905–919.

    Article  CAS  Google Scholar 

  • Khan, S. A., Zhang, M., Liu, L., Dong, L., Ma, Y., & Wei, Z., et al. (2020). Co-culture submerged fermentation by lactobacillus and yeast more effectively improved the profiles and bioaccessibility of phenolics in extruded brown rice than single-culture fermentation. Food chemistry, 326, 126985.

  • Khaneghah, A. M., Fakhri, Y., & Sant’Ana, A. S. (2018). Impact of unit operations during processing of cereal-based products on the levels of deoxynivalenol, total aflatoxin, ochratoxin A, and zearalenone: A systematic review and meta-analysis. Food Chemistry, 268, 611–624.

    Article  Google Scholar 

  • Kumar, P., Mahato, D. K., Sharma, B., Borah, R., Haque, S., & Mahmud, M. M. C., et al. (2020). Ochratoxins in food and feed: Occurrence and its impact on human health and management strategies. Toxicon, 187, 151–162. https://doi.org/10.1016/j.toxicon.2020.08.031

  • Mateo, E. M., Medina, Á., Mateo, F., Valle-Algarra, F. M., Pardo, I., & Jiménez, M. (2010). Ochratoxin A removal in synthetic media by living and heat-inactivated cells of Oenococcus oeni isolated from wines. Food Control, 21(1), 23–28.

    Article  CAS  Google Scholar 

  • Niderkorn, V., Morgavi, D. P., Aboab, B., Lemaire, M., & Boudra, H. (2009). Cell wall component and mycotoxin moieties involved in the binding of fumonisin B1 and B2 by lactic acid bacteria. Journal of Applied Microbiology, 106(3), 977–985.

    Article  CAS  Google Scholar 

  • Ojha, K. S., Mason, T. J., O’Donnell, C. P., Kerry, J. P., & Tiwari, B. K. (2017). Ultrasound technology for food fermentation applications. Ultrasonics Sonochemistry, 34, 410–417.

    Article  CAS  Google Scholar 

  • Paíga, P., Morais, S., Oliva-Teles, T., Correia, M., Delerue-Matos, C., Sousa, A. M. M., et al. (2013). Determination of ochratoxin A in bread: Evaluation of microwave-assisted extraction using an orthogonal composite design coupled with response surface methodology. Food and Bioprocess Technology, 6(9), 2466–2477.

    Article  Google Scholar 

  • Pakfetrat, S., Amiri, S., Radi, M., Abedi, E., & Torri, L. (2019). Reduction of phytic acid, aflatoxins and other mycotoxins in wheat during germination. Journal of the Science of Food and Agriculture, 99(10), 4695–4701.

    Article  CAS  Google Scholar 

  • Pawlowska, A. M., Zannini, E., Coffey, A., & Arendt, E. K. (2012). “Green preservatives”: Combating fungi in the food and feed industry by applying antifungal lactic acid bacteria. In Advances in food and nutrition research, 66, 217–238. Elsevier.

  • Piotrowska, M. (2014). The adsorption of ochratoxin A by Lactobacillus species. Toxins, 6(9), 2826–2839.

    Article  CAS  Google Scholar 

  • Piotrowska, M., & Zakowska, Z. (2005). The elimination of ochratoxin A by lactic acid bacteria strains. Polish Journal of Microbiology, 54(4), 279–286.

    CAS  PubMed  Google Scholar 

  • Rasch, C., Kumke, M., & Löhmannsröben, H.-G. (2010). Sensing of mycotoxin producing fungi in the processing of grains. Food and Bioprocess Technology, 3(6), 908–916.

    Article  CAS  Google Scholar 

  • Sheikh-Zeinoddin, M., & Khalesi, M. (2018). Biological detoxification of ochratoxin A in plants and plant products. Toxin Reviews.

  • Shi, H., Ileleji, K., Stroshine, R. L., Keener, K., & Jensen, J. L. (2017). Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food and Bioprocess Technology, 10(6), 1042–1052.

    Article  CAS  Google Scholar 

  • Turbic, A., Ahokas, J. T., & Haskard, C. A. (2002). Selective in vitro binding of dietary mutagens, individually or in combination, by lactic acid bacteria. Food Additives & Contaminants, 19(2), 144–152.

    Article  CAS  Google Scholar 

  • Vidal, A., Marín, S., Morales, H., Ramos, A. J., & Sanchis, V. (2014). The fate of deoxynivalenol and ochratoxin A during the breadmaking process, effects of sourdough use and bran content. Food and Chemical Toxicology, 68, 53–60.

    Article  CAS  Google Scholar 

  • Zhu, F. (2015). Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. Trends in Food Science & Technology, 43(1), 1–17. https://doi.org/10.1016/j.tifs.2014.12.008

Download references

Author information

Authors and Affiliations

Authors

Contributions

EA wrote the manuscript conceived and designed the research and analyzed the data. MM and SMBH conducted experiments. All the authors read and approved the manuscript.

Corresponding authors

Correspondence to Elahe Abedi or Seyed Mohammad Bagher Hashemi.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedi, E., Mousavifard, M. & Hashemi, S.M.B. Ultrasound-Assisted Detoxification of Ochratoxin A: Comparative Study of Cell Wall Structure, Hydrophobicity, and Toxin Binding Capacity of Single and Co-culture Lactic Acid Bacteria. Food Bioprocess Technol 15, 539–560 (2022). https://doi.org/10.1007/s11947-022-02767-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02767-7

Keywords

Navigation