Skip to main content

Encapsulation of Magnesium with Lentil Flour by Using Double Emulsion to Produce Magnesium Enriched Cakes

Abstract

Magnesium, a vital mineral for the human body, should be encapsulated before addition into foods to avoid the drawbacks related to chemical reactions. In this study, double emulsion entrapment was applied to protect magnesium. Different concentrations (15, 20, 25, 30%) of lentil flour were used as the hydrophilic surfactant, and high-speed homogenizer and ultrasonic homogenizer were applied as the first step homogenization methods for preparing the double emulsions. Double emulsions were analyzed in terms of particle size and distribution, rheology, instant stability, long-term stability, encapsulation efficiency, morphology, and nuclear magnetic resonance (NMR) experiments. Double emulsions with lower particle size, higher viscosity, and higher stability were obtained at higher lentil flour concentrations. Stability of double emulsions increased from 67.6 to 76.0% when lentil flour concentration increased from 15 to 30%. Ultrasonic homogenization also contributed to produce double emulsions with higher stability (> 99%). Moreover, double emulsions were added into cake batter and their effects on cake quality and their baking stabilities and in vitro bioaccessibilities were analyzed. Results showed that double emulsion addition did not significantly affect the quality of cakes. In addition, cakes containing magnesium encapsulated in double emulsion had similar taste with magnesium free cakes. Double emulsions had about 79–82% higher baking stability than control. In in vitro magnesium bioaccessibility, results indicated that magnesium encapsulated in double emulsion could be digested as much as the uncoated magnesium. Thus, it can be concluded that double emulsion entrapment could be used for enrichment of foods with active valuable components like magnesium.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Availability of Data and Material

All data can be shared if required.

References

  1. Ahmed, J., Taher, A., Mulla, M. Z., Al-Hazza, A., & Luciano, G. (2016). Effect of sieve particle size on functional, thermal, rheological and pasting properties of Indian and Turkish lentil flour. Journal of Food Engineering, 186, 34–41. https://doi.org/10.1016/j.jfoodeng.2016.04.008

    Article  Google Scholar 

  2. Altuntas, O. Y., Sumnu, G., & Sahin, S. (2017). Preparation and characterization of W/O/W type double emulsion containing PGPR–lecithin mixture as lipophilic surfactant. Journal of Dispersion Science and Technology, 38(4), 486–493. https://doi.org/10.1080/01932691.2016.1179121

    CAS  Article  Google Scholar 

  3. Anastasova, L., Petreska Ivanovska, T., Zhivikj, Z., Shutevska, K., Petkovska, R., & Petrushevska-Tozi, L. (2020). Principal component analysis of sensory attributes of calcium- and magnesium enriched milk. Macedonian Pharmaceutical Bulletin, 66(03), 21–22. https://doi.org/10.33320/maced.pharm.bull.2020.66.03.010

  4. Artiga-Artigas, M., Molet-Rodríguez, A., Salvia-Trujillo, L., & Martín-Belloso, O. (2019). Formation of houble (W 1 /O/W 2) ymulsions as carriers of hydrophilic and lipophilic active compounds. Food and Bioprocess Technology, 12(3), 422–435. https://doi.org/10.1007/s11947-018-2221-3

    CAS  Article  Google Scholar 

  5. Aydogdu, A., Kirtil, E., Sumnu, G., Oztop, M. H., & Aydogdu, Y. (2018). Utilization of lentil flour as a biopolymer source for the development of edible films. Journal of Applied Polymer Science, 135(23), 1–10. https://doi.org/10.1002/app.46356

    CAS  Article  Google Scholar 

  6. Bchir, B., Bouaziz, M. A., Ettaib, R., Sebii, H., Danthine, S., Blecker, C., Besbes, S., & Attia, H. (2020). Optimization of ultrasound-assisted osmotic dehydration of pomegranate seeds (Punica granatum L.) using response surface methodology. Journal of Food Processing and Preservation, 44(9). https://doi.org/10.1111/jfpp.14657

  7. Benichou, A., Aserin, A., & Garti, N. (2004). Double emulsions stabilized with hybrids of natural polymers for entrapment and slow release of active matters. Advances in Colloid and Interface Science, 108, 29–41.

    Article  Google Scholar 

  8. Benichou, A., Aserin, A., & Garti, N. (2007). W/O/W double emulsions stabilized with WPI-polysaccharide complexes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 294(1–3), 20–32. https://doi.org/10.1016/j.colsurfa.2006.07.056

    CAS  Article  Google Scholar 

  9. Bernewitz, R., Dalitz, F., Köhler, K., Schuchmann, H. P., & Guthausen, G. (2013). Characterisation of multiple emulsions by NMR spectroscopy and diffusometry. Microporous and Mesoporous Materials, 178, 69–73. https://doi.org/10.1016/j.micromeso.2013.02.049

    CAS  Article  Google Scholar 

  10. Bonnet, M., Cansell, M., Berkaoui, A., Ropers, M. H., Anton, M., & Leal-Calderon, F. (2009). Release rate profiles of magnesium from multiple W/O/W emulsions. Food Hydrocolloids, 23(1), 92–101. https://doi.org/10.1016/j.foodhyd.2007.11.016

    CAS  Article  Google Scholar 

  11. Bonnet, M., Cansell, M., Placin, F., Anton, M., & Leal-Calderon, F. (2010). Impact of sodium caseinate concentration and location on magnesium release from multiple W/O/W emulsions. Langmuir, 26(12), 9250–9260. https://doi.org/10.1021/la100078b

    CAS  Article  PubMed  Google Scholar 

  12. Canselier, J. P., Wilhelm, A. M., Delmas, H., & Gourdon, C. (1999). Emulsification by Ultrasound: Drop Size Distribution and Stability., 6, 75–83.

    Google Scholar 

  13. Chakraborti, S., Chakraborti, T., Mandal, M., Mandal, A., Das, S., & Ghosh, S. (2002). Protective role of magnesium in cardiovascular diseases: A review. Molecular and Cellular Biochemistry, 238(1–2), 163–179. https://doi.org/10.1023/A:1019998702946

    CAS  Article  PubMed  Google Scholar 

  14. Cofrades, S., Antoniou, I., Solas, M. T., Herrero, A. M., & Jiménez-Colmenero, F. (2013). Preparation and impact of multiple (water-in-oil-in-water) emulsions in meat systems. Food Chemistry, 141(1), 338–346. https://doi.org/10.1016/j.foodchem.2013.02.097

    CAS  Article  PubMed  Google Scholar 

  15. Damat, D., Tain, A., Handjani, H., Chasanah, U., & Siskawardani, D. D. (2019). Functional cake characteristics of modified arrowroot starch (MAS) with the gelatinization-retrograde method. IOP Conference Series: Materials Science and Engineering, 532(1). https://doi.org/10.1088/1757-899X/532/1/012017

  16. DiNicolantonio, J. J., O’Keefe, J. H., & Wilson, W. (2018). Subclinical magnesium deficiency: A principal driver of cardiovascular disease and a public health crisis. Open Heart, 5(1). https://doi.org/10.1136/openhrt-2017-000668

  17. Fechner, A., Knoth, A., Scherze, I., & Muschiolik, G. (2007). Stability and release properties of double-emulsions stabilised by caseinate-dextran conjugates. Food Hydrocolloids, 21(5–6), 943–952. https://doi.org/10.1016/j.foodhyd.2006.10.021

    CAS  Article  Google Scholar 

  18. Garti, N., & Bisperink, C. (1998). Double emulsions: Progress and applications. Current Opinion in Colloid & Interface Science, 3(6), 657–667. https://doi.org/10.1016/S1359-0294(98)80096-4

    CAS  Article  Google Scholar 

  19. Garti, N., & Lutz, R. (2004). “Chapter 14-Recent Progress in Double Emulsions”, Interface Science and Technology”, 4, 557-605. 

  20. Gharehbeglou, P., Jafari, S. M., Homayouni, A., Hamishekar, H., & Mirzaei, H. (2019). Fabrication of double W1/O/W2 nano-emulsions loaded with oleuropein in the internal phase (W1) and evaluation of their release rate. Food Hydrocolloids, 89(October 2018), 44–55. https://doi.org/10.1016/j.foodhyd.2018.10.020

  21. Hatkar, U. N., & Gogate, P. R. (2012). Process intensification of anti-solvent crystallization of salicylic acid using ultrasonic irradiations. Chemical Engineering and Processing: Process Intensification, 57–58, 16–24. https://doi.org/10.1016/j.cep.2012.04.005

    CAS  Article  Google Scholar 

  22. Hebishy, E., Buffa, M., Guamis, B., Blasco-Moreno, A., & Trujillo, A. J. (2015). Physical and oxidative stability of whey protein oil-in-water emulsions produced by conventional and ultra high-pressure homogenization: Effects of pressure and protein concentration on emulsion characteristics. Innovative Food Science and Emerging Technologies, 32, 79–90. https://doi.org/10.1016/j.ifset.2015.09.013

    CAS  Article  Google Scholar 

  23. Herzi, S., & Essafi, W. (2018). Different magnesium release profiles from W/O/W emulsions based on crystallized oils. Journal of Colloid and Interface Science, 509(2018), 178–188. https://doi.org/10.1016/j.jcis.2017.08.089

    CAS  Article  PubMed  Google Scholar 

  24. Herzi, S., & Essafi, W. (2020). Magnesium release behavior from W/O/W emulsions incorporated into yogurt: Application to food supplementation. Journal of Food Processing and Preservation, 44(12). https://doi.org/10.1111/jfpp.14942

  25. Hills, B. P., Takacs, S. F., & Belton, P. S. (1990). A new interpretation of proton NMR relaxation time measurements of water in food. Food Chemistry, 37(2), 95–111.

    CAS  Article  Google Scholar 

  26. Hongyu, W., Hulbert, G. J., & Mount, J. R. (2000). Effects of ultrasound on milk homogenization and fermentation with yogurt starter. Innovative Food Science and Emerging Technologies, 1(3), 211–218. https://doi.org/10.1016/S1466-8564(00)00020-5

    Article  Google Scholar 

  27. Huang, X., Kakuda, Y., & Cui, W. (2001). Hydrocolloids in emulsions: Particle size distribution and interfacial activity. Food Hydrocolloids, 15(4–6), 533–542. https://doi.org/10.1016/S0268-005X(01)00091-1

    CAS  Article  Google Scholar 

  28. Huerta-Vera, K., Flores-Andrade, E., Pérez-Sato, J. A., Morales-Ramos, V., Pascual-Pineda, L. A., & Contreras-Oliva, A. (2017). Enrichment of banana with Lactobacillus rhamnosus using double emulsion and osmotic dehydration. Food and Bioprocess Technology, 10(6), 1053–1062. https://doi.org/10.1007/s11947-017-1879-2

    CAS  Article  Google Scholar 

  29. Hughes, E., Maan, A. A., Acquistapace, S., Burbidge, A., Johns, M. L., Gunes, D. Z., Clausen, P., Syrbe, A., Hugo, J., Schroen, K., Miralles, V., Atkins, T., Gray, R., Homewood, P., & Zick, K. (2013). Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions. Journal of Colloid and Interface Science, 389(1), 147–156. https://doi.org/10.1016/j.jcis.2012.07.073

    CAS  Article  PubMed  Google Scholar 

  30. Ilyasoglu Buyukkestelli, H., & El, S. N. (2019). Development and characterization of double emulsion to encapsulate iron. Journal of Food Engineering, 263(July), 446–453. https://doi.org/10.1016/j.jfoodeng.2019.07.026

    CAS  Article  Google Scholar 

  31. Iqbal, M., Zafar, N., Fessi, H., & Elaissari, A. (2015). Double Emulsion Solvent Evaporation Techniques Used for Drug Encapsulation., 496, 173–190.

    CAS  Google Scholar 

  32. Ismail, A. A. A., Ismail, Y., & Ismail, A. A. (2018). Chronic magnesium deficiency and human disease; time for reappraisal? Qjm: An International Journal of Medicine, 111(11), 759–763. https://doi.org/10.1093/qjmed/hcx186

  33. Karaca, A. C., Low, N., & Nickerson, M. (2011). Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. FRIN, 44(9), 2742–2750. https://doi.org/10.1016/j.foodres.2011.06.012

    CAS  Article  Google Scholar 

  34. Khadem, B., & Sheibat-Othman, N. (2019). Theoretical and experimental investigations of double emulsion preparation by ultrasonication. Industrial and Engineering Chemistry Research, 58(19), 8220–8230. https://doi.org/10.1021/acs.iecr.9b00556

    CAS  Article  Google Scholar 

  35. Kirtil, E., & Oztop, M. H. (2016). Characterization of emulsion stabilization properties of quince seed extract as a new source of hydrocolloid. Food Research International, 85, 84–94. https://doi.org/10.1016/j.foodres.2016.04.019

    CAS  Article  PubMed  Google Scholar 

  36. Lamba, H., Sathish, K., & Sabikhi, L. (2015). Double emulsions: Emerging delivery system for plant bioactives. Food and Bioprocess Technology, 8(4), 709–728. https://doi.org/10.1007/s11947-014-1468-6

    CAS  Article  Google Scholar 

  37. Leong, T. S. H., Zhou, M., Zhou, D., Ashokkumar, M., & Martin, G. J. O. (2018). The formation of double emulsions in skim milk using minimal food-grade emulsifiers – A comparison between ultrasonic and high pressure homogenisation efficiencies. Journal of Food Engineering, 219, 81–92. https://doi.org/10.1016/j.jfoodeng.2017.09.018

    CAS  Article  Google Scholar 

  38. Lewis, R. T., Djurhuus, K., & Seland, J. G. (2015). Characterising oil and water in porous media using decay due to diffusion in the internal field. Journal of Magnetic Resonance, 259, 1–9. https://doi.org/10.1016/j.jmr.2015.07.004

    CAS  Article  PubMed  Google Scholar 

  39. Li, B., Jiang, Y., Liu, F., Chai, Z., Li, Y., Li, Y., & Leng, X. (2012). Synergistic effects of whey protein-polysaccharide complexes on the controlled release of lipid-soluble and water-soluble vitamins in W1/O/W2 double emulsion systems. International Journal of Food Science and Technology, 47(2), 248–254. https://doi.org/10.1111/j.1365-2621.2011.02832.x

    CAS  Article  Google Scholar 

  40. Lobato-Calleros, C., Sosa-Pérez, A., Rodríguez-Tafoya, J., Sandoval-Castilla, O., Pérez-Alonso, C., & Vernon-Carter, E. J. (2008). Structural and textural characteristics of reduced-fat cheese-like products made from W1/O/W2 emulsions and skim milk. LWT - Food Science and Technology, 41(10), 1847–1856. https://doi.org/10.1016/j.lwt.2008.01.006

    CAS  Article  Google Scholar 

  41. Lohith Kumar, D. H., Mitra, J., & Roopa, S. S. (2020). Nanoencapsulation of Food Carotenoids. https://doi.org/10.1007/978-3-030-26672-1_7

    Article  Google Scholar 

  42. Lohith Kumar, D. H., & Sarkar, P. (2018). Encapsulation of bioactive compounds using nanoemulsions. Environmental Chemistry Letters, 16(1), 59–70. https://doi.org/10.1007/s10311-017-0663-x

    CAS  Article  Google Scholar 

  43. Lynch, E. J., Dal Bello, F., Sheehan, E. M., Cashman, K. D., & Arendt, E. K. (2009). Fundamental studies on the reduction of salt on dough and bread characteristics. Food Research International, 42(7), 885–891. https://doi.org/10.1016/j.foodres.2009.03.014

    CAS  Article  Google Scholar 

  44. Márquez, A. L., & Wagner, J. R. (2010). Rheology of double (w/o/w) emulsions prepared with soybean milk and fortified with calcium. Journal of Texture Studies, 41(5), 651–671. https://doi.org/10.1111/j.1745-4603.2010.00247.x

    Article  Google Scholar 

  45. Meng, F. T., Ma, G. H., Liu, Y. D., Qiu, W., & Su, Z. G. (2004). Microencapsulation of bovine hemoglobin with high bio-activity and high entrapment efficiency using a W/O/W double emulsion technique. Colloids and Surfaces B: Biointerfaces, 33(3–4), 177–183. https://doi.org/10.1016/j.colsurfb.2003.10.003

    CAS  Article  Google Scholar 

  46. Moriano, M. E., & Alamprese, C. (2020). Whey protein concentrate and egg white powder as structuring agents of double emulsions for Food applications. Food and Bioprocess Technology, 13(7), 1154–1165. https://doi.org/10.1007/s11947-020-02467-0

    CAS  Article  Google Scholar 

  47. Murillo-Martínez, M., Pedroza-Islas, R., Lobato-Calleros, C., Martínez-Ferez, A., & Vernon-Carter, E. J. (2011). Designing W1/O/W2 double emulsions stabilized by protein–polysaccharide complexes for producing edible films: Rheological, mechanical and water vapour properties. Food Hydrocolloids, 25, ) 577e585.

  48. Murray, B. S., Durga, K., Yusoff, A., & Stoyanov, S. D. (2011). Food hydrocolloids stabilization of foams and emulsions by mixtures of surface active food-grade particles and proteins. Food Hydrocolloids, 25(4), 627–638. https://doi.org/10.1016/j.foodhyd.2010.07.025

    CAS  Article  Google Scholar 

  49. Okezie, B. O., & Bello, A. B. (1988). Physicochemical and functional properties of winged bean flour and isolate compared with soy isolate. Journal of Food Science, 53(2), 450–454. https://doi.org/10.1111/j.1365-2621.1988.tb07728.x

    CAS  Article  Google Scholar 

  50. Pasini, G., Simonato, B., Giannattasio, M., Peruffo, A. D. B., & Curioni, A. (2001). Modifications of wheat flour proteins during in vitro digestion of bread dough, crumb, and crust: An electrophoretic and immunological study. Journal of Agricultural and Food Chemistry, 49(5), 2254–2261. https://doi.org/10.1021/jf0014260

    CAS  Article  PubMed  Google Scholar 

  51. Pocan, P., Ilhan, E., & Oztop, M. H. (2019). Characterization of emulsion stabilization properties of gum tragacanth, xanthan gum and sucrose monopalmitate: A comparative study. Journal of Food Science, 84(5), 1087–1093. https://doi.org/10.1111/1750-3841.14602

    CAS  Article  PubMed  Google Scholar 

  52. Ranade, V. V., & Somberg, J. C. (2001). Bioavailability and pharmacokinetics of magnesium after administration of magnesium salts to humans. American Journal of Therapeutics. https://doi.org/10.1097/00045391-200109000-00008

    Article  PubMed  Google Scholar 

  53. Ranjan, S., Dasgupta, N., Lichtfouse, E. (2016). Nanoscience in Food and Agriculture 2 (21). Switzerland: Springer

  54. Rani, M. R., & Bhattacharya K. R. (1989). “Rheology Of Rice‐Flour Pastes: Effect Of Variety, Concentration, And Temperature And Time Of Cooking”, Journal of Texture Studies, 20(2), 127-137.  

  55. Rosanoff, A., Weaver, C. M., & Rude, R. K. (2012). Suboptimal magnesium status in the United States: Are the health consequences underestimated? Nutrition Reviews, 70(3), 153–164. https://doi.org/10.1111/j.1753-4887.2011.00465.x

    Article  PubMed  Google Scholar 

  56. Sahin, S., & Sumnu G. (2006). Physical Properties of Foods. USA: Springer

  57. Saffarionpour, S., & Diosady, L. L. (2021). Multiple emulsions for enhanced delivery of vitamins and iron micronutrients and their application for food fortification. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-021-02586-2

    Article  Google Scholar 

  58. Sakiyan, O., Sumnu, G., Sahin, S., & Meda, V. (2007). The effect of different formulations on physical properties of cakes baked with microwave and near infrared-microwave combinations. Journal of Microwave Power and Electromagnetic Energy, 41(1), 20–26. https://doi.org/10.1080/08327823.2006.11688551

    Article  Google Scholar 

  59. Sathe, S. K., & Salunkhe, D. K. (1981). Functional properties of the great northern bean (Phaseolus vulgaris L.) proteins: Emulsion, foaming, viscosity, and gelation properties. Journal of Food Science, 46(1), 71–81. https://doi.org/10.1111/j.1365-2621.1981.tb14533.x

  60. Schuch, A., Wrenger, J., & Schuchmann, H. P. (2014). Production of W/O/W double emulsions. Part II: Influence of emulsification device on release of water by coalescence. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 461, 344–351. https://doi.org/10.1016/j.colsurfa.2013.11.044

    CAS  Article  Google Scholar 

  61. Setiasih, S., Adimas, A. C. D., Dzikria, V., & Hudiyono, S. (2018). Stability test of partially purified bromelain from pineapple (Ananas comosus L. Merr) core extract in artificial stomach fluid. IOP Conference Series: Materials Science and Engineering, 299(1). https://doi.org/10.1088/1757-899X/299/1/012016

  62. Sevimli, K. M., Sumnu, G., & Sahin, S. (2005). Optimization of halogen lamp-microwave combination baking of cakes: A response surface methodology study. European Food Research and Technology, 221(1–2), 61–68. https://doi.org/10.1007/s00217-004-1128-6

    CAS  Article  Google Scholar 

  63. Silva, M., Anh Bui, T. H., Dharmadana, D., Zisu, B., & Chandrapala, J. (2020). Ultrasound-assisted formation of double emulsions stabilized by casein-whey protein mixtures. Food Hydrocolloids, 109(July), 106143. https://doi.org/10.1016/j.foodhyd.2020.106143

  64. Swaminathan, R. (2000). Disorders of magnesium metabolism. CPD Bulletin Clinical Biochemistry, 2(1), 3–12. https://doi.org/10.1016/B978-0-323-04883-5.50036-2

    Article  Google Scholar 

  65. Tal-Figiel, B. (2007). The formation of stable W/O, O/W, W/O/W cosmetic emulsions in an ultrasonic field. Chemical Engineering Research and Design, 85(5 A), 730–734. https://doi.org/10.1205/cherd06199

  66. Tan, H. L., Tan, T. C., & Easa, A. M. (2018). The use of selected hydrocolloids to enhance cooking quality and hardness of zero-salt noodles. International Journal of Food Science and Technology, 53(7), 1603–1610. https://doi.org/10.1111/ijfs.13742

    CAS  Article  Google Scholar 

  67. Tang, S. Y., Shridharan, P., & Sivakumar, M. (2013). Ultrasonics sonochemistry impact of process parameters in the generation of novel aspirin nanoemulsions – Comparative studies between ultrasound cavitation and microfluidizer. 20, 485–497.

  68. Teixé-Roig, J., Oms-Oliu, G., Velderrain-Rodríguez, G. R., Odriozola-Serrano, I., & Martín-Belloso, O. (2018). The effect of sodium carboxymethylcellulose on the stability and bioaccessibility of anthocyanin water-in-oil-in-water emulsions. Food and Bioprocess Technology, 11(12), 2229–2241. https://doi.org/10.1007/s11947-018-2181-7

    CAS  Article  Google Scholar 

  69. Vélez-Erazo, E. M., Consoli, L., & Hubinger, M. D. (2020). Spray drying of mono- and double-layer emulsions of PUFA-rich vegetable oil homogenized by ultrasound. Drying Technology, 0(0), 1–14. https://doi.org/10.1080/07373937.2020.1728305

  70. Vermeir, L., Balcaen, M., Sabatino, P., Dewettinck, K., & Van der Meeren, P. (2014). Influence of molecular exchange on the enclosed water volume fraction of W/O/W double emulsions as determined by low-resolution NMR diffusometry and T2-relaxometry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 456(1), 129–138. https://doi.org/10.1016/j.colsurfa.2014.05.022

    CAS  Article  Google Scholar 

  71. Wichchukit, S., & O’Mahony, M. (2015). The 9-point hedonic scale and hedonic ranking in food science: Some reappraisals and alternatives. Journal of the Science of Food and Agriculture, 95(11), 2167–2178. https://doi.org/10.1002/jsfa.6993

    CAS  Article  PubMed  Google Scholar 

  72. Wischke, C., & Borchert, H. H. (2006). Influence of the primary emulsification procedure on the characteristics of small protein-loaded PLGA microparticles for antigen delivery. Journal of Microencapsulation, 23(4), 435–448. https://doi.org/10.1080/02652040600612512

    CAS  Article  PubMed  Google Scholar 

  73. Workinger, J. L., Doyle, R. P., & Bortz, J. (2018). Challenges in the diagnosis of magnesium status. Nutrients, 10(9), 1–23. https://doi.org/10.3390/nu10091202

    CAS  Article  Google Scholar 

  74. Ye, A. (2008). Interfacial composition and stability of emulsions made with mixtures of commercial sodium caseinate and whey protein concentrate. Food Chemistry, 110(4), 946–952. https://doi.org/10.1016/j.foodchem.2008.02.091

    CAS  Article  PubMed  Google Scholar 

  75. Yildirim, M., Sumnu, G., & Sahin, S. (2016). Rheology, particle-size distribution, and stability of low-fat mayonnaise produced via double emulsions. Food Science and Biotechnology, 25(6), 1613–1618. https://doi.org/10.1007/s10068-016-0248-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Yildirim, M., Sumnu, G., & Sahin, S. (2017). The effects of emulsifier type, phase ratio, and homogenization methods on stability of the double emulsion. Journal of Dispersion Science and Technology, 38(6), 807–814. https://doi.org/10.1080/01932691.2016.1201768

    CAS  Article  Google Scholar 

Download references

Funding

The research leading to these results received funding from The Scientific and Technological Council of Turkey (TUBITAK) under Grant Agreement Number 119R012.

Author information

Affiliations

Authors

Contributions

Cansu Kabakcı: Conceptualization, methodology, investigation, writing. Gulum Sumnu: Conceptualization, supervision, reviewing and editing. Serpil Sahin: Conceptualization, supervision, reviewing and editing. Halil Mecit Oztop: Reviewing and editing.

Corresponding author

Correspondence to Gulum Sumnu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kabakci, C., Sumnu, G., Sahin, S. et al. Encapsulation of Magnesium with Lentil Flour by Using Double Emulsion to Produce Magnesium Enriched Cakes. Food Bioprocess Technol (2021). https://doi.org/10.1007/s11947-021-02672-5

Download citation

Keywords

  • Cake
  • Double emulsion
  • Encapsulation
  • Lentil flour
  • Magnesium
  • Ultrasonication