Skip to main content

Advertisement

Log in

Multiple Emulsions for Enhanced Delivery of Vitamins and Iron Micronutrients and Their Application for Food Fortification

  • Review Article
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

A Correction to this article was published on 09 July 2021

This article has been updated

Abstract

Vitamins and iron are micronutrients that are of paramount importance in human nutrition. High prevalence of the diseases caused by micronutrient deficiency accentuates the need to consider strategies for the fortification of food products with these micronutrients to enhance their nutritional properties for addressing micronutrient deficiencies. During recent years, specific attention has been devoted to the development and implementation of different processing alternatives for food fortification. Multiple emulsion systems, particularly double emulsions (DEs), show potential for delivery of micronutrients, enabling their controlled delivery and enhanced bioaccessibility during digestion. As micronutrient deficiencies are a major public health concern, this review article aims to highlight recent advances in the application of multiple emulsions for enhanced delivery of vitamins and iron with the aim to provide insights to food scientists and nutritionists considering strategies for food fortification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  • Abbas, S., Wei, C. D., Hayat, K., & Xiaoming, Z. (2012). Ascorbic acid: microencapsulation techniques and trends—a review. Food Reviews International, 28(4), 343–374. https://doi.org/10.1080/87559129.2011.635390.

    Article  CAS  Google Scholar 

  • Abbaspour, N., Hurrell, R., & Kelishadi, R. (2014). Review on iron and its importance for human health. Journal of Research in Medical Sciences : The Official Journal of Isfahan University of Medical Sciences, 19(2), 164–174.

    Google Scholar 

  • Albate, A. R., & Weitz, D. A. (2009). High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics. Small, 5(18), 2030–2032. https://doi.org/10.1002/smll.200900569.

    Article  CAS  Google Scholar 

  • Allen, L. H., & Jones, K. M. (2005). Vitamin B12. In P. M. Coates, M. R. Blackman, G. M. Cragg, M. Levine, J. Moss, & J. D. White (Eds.), Encyclopedia of Dietary Supplements. New York: Marcel Dekker.

    Google Scholar 

  • Allen, L. H., de Benoist, B., Dary, O., & Hurrell, R. (2006a). Part I. The role of food fortification in the control of micronutrient malnutrition. In Guidelines on food fortification with micronutrients: World Health Organization and Food and Agriculture Organization of the United Nations.

  • Allen, L. H., de Benoist, B., Dary, O., & Hurrell, R. (2006b). Part II. Evaluating the public health significance of micronutrient malnutrition. In Guidelines on food fortification with micronutrients: World Health Organization and Food and Agriculture Organization of the United Nations.

  • Allen, L. H., de Benoist, B., Dary, O., & Hurrell, R. (2006c). Part III. Fortificants: physical characteristics, selection and use with specific food vehicles. In. France: World Health Organization and Food and Agriculture Organization of the United Nations.

  • Andrade, J., & Corredig, M. (2016). Vitamin D3 and phytosterols affect the properties of polyglycerol polyricinoleate (PGPR) and protein interfaces. Food Hydrocolloids, 54(Part B), 278–283. https://doi.org/10.1016/j.foodhyd.2015.10.001.

    Article  CAS  Google Scholar 

  • Armbruster, H., Karbstein, H. P., & Schubert, H. (1991). Herstellung von Emulsionen unter Berücksichtigung der Grenzflächenbesetzungskinetik des Emulgators. Chemie Ingenieur Technik, 63(3), 266–267. https://doi.org/10.1002/cite.330630323.

    Article  CAS  Google Scholar 

  • Arunothayanun, P., & Florence, A. T. (2003). Rheology of niosome dispersions. In Uchegbu, I. F. (Ed.), Synthetic Surfactant Vesicles: Niosomes and other Non-Phospholipid Vesicular Systems: CRC Press.

  • Assadpour, E., & Jafari, S.-M. (2017). Spray drying of folic acid within nano-emulsions: optimization by Taguchi approach. Drying Technology, 35(9), 1152–1160. https://doi.org/10.1080/07373937.2016.1242016.

    Article  CAS  Google Scholar 

  • Assadpour, E., Maghsoudlou, Y., Jafari, S.-M., Ghorbani, M., & Aalami, M. (2016a). Evaluation of folic acid nano-encapsulation by double emulsions. Food and Bioprocess Technology, 9(12), 2024–2032. https://doi.org/10.1007/s11947-016-1786-y.

    Article  CAS  Google Scholar 

  • Assadpour, E., Maghsoudlou, Y., Jafari, S. M., Ghorbani, M., & Aalami, M. (2016b). Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions. International Journal of Biological Macromolecules, 86, 197–207. https://doi.org/10.1016/j.ijbiomac.2016.01.064.

    Article  CAS  PubMed  Google Scholar 

  • Bahtz, J. (2015). Osmotically driven mass transport in dynamic membrane processed multiple W/O/W emulsion and suspension systems. Zürich: ETH Zürich.

    Google Scholar 

  • Bahtz, J., Gunes, D. Z., Hughes, E., Pokorny, L., Riesch, F., Syrbe, A., Fischer, P., & Windhab, E. J. (2015). Decoupling of mass transport mechanisms in the stagewise swelling of multiple emulsions. Langmuir, 31(19), 5265–5273. https://doi.org/10.1021/acs.langmuir.5b01138.

    Article  CAS  PubMed  Google Scholar 

  • Bahtz, J., Gunes, D. Z., Syrbe, A., Mosca, N., Fischer, P., & Windhab, E. J. (2016). Quantification of spontaneous W/O emulsification and its impact on the swelling kinetics of multiple W/O/W emulsions. Langmuir, 32(23), 5787–5795. https://doi.org/10.1021/acs.langmuir.6b00425.

    Article  CAS  PubMed  Google Scholar 

  • Bajaj, S. R., & Singhal, R. S. (2021). Enhancement of stability of vitamin B12 by co-crystallization: a convenient and palatable form of fortification. Journal of Food Engineering, 291, 110231. https://doi.org/10.1016/j.jfoodeng.2020.110231.

    Article  CAS  Google Scholar 

  • Ball, G. F. M. (2006). Vitamins in foods: analysis, bioavailability, and stability. Boca Raton: Taylor & Francis Group, LLC..

    Google Scholar 

  • Bender, D. A. (2012). Digestion and absorption. In Introduction to Nutrition and Metabolism. Boca Raton: Taylor & Francis Group, LLC..

    Google Scholar 

  • Berdanier, C. D. (1998). Water-soluble vitamins. In Advanced Nutrition Micronutrients. Boca Raton: Taylor & Francis Group, LLC..

    Google Scholar 

  • Binks, B. P., & Lumsdon, S. Q. (2000). Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica. Langmuir, 16(6), 2539–2547. https://doi.org/10.1021/la991081j.

    Article  CAS  Google Scholar 

  • Binks, B. P., & Rodrigues, J. A. (2003). Types of phase inversion of silica particle stabilized emulsions containing triglyceride oil. Langmuir, 19(12), 4905–4912. https://doi.org/10.1021/la020960u.

    Article  CAS  Google Scholar 

  • Bou, R., Cofrades, S., & Jiménez-Colmenero, F. (2014). Influence of high pressure and heating treatments on physical parameters of water-in-oil-in-water emulsions. Innovative Food Science and Emerging Technologies, 23, 1–9. https://doi.org/10.1016/j.ifset.2014.04.001.

    Article  CAS  Google Scholar 

  • Brabin, B. J., Premi, Z., & Verhoeff, F. (2001). An analysis of anaemia and child mortality. The Journal of Nutrition, 131(2S-2), 636S–645S. https://doi.org/10.1093/jn/131.2.636S.

    Article  CAS  PubMed  Google Scholar 

  • Bulusu, S., & Wesley, A. S. (2011). Addressing micronutrient malnutrition through food fortification. In Chander Vir, S. (Ed.), Public Health Nutrition in Developing Countries (pp. 795-843): Woodhead Publishing India PVT. LTD.

  • Calesson, P. M., Blomberg, E., & Poptoshev, E. (2001). Surface forces and emulsion stability. In Sjöblom, J. (Ed.), Encyclopedia Handbook of Emulsion Technology: Marcel Dekker Inc.

  • Chalella, M., Thomazini, M., & Favaro-Trindade, C. S. (2019). Improving stability of vitamin B12 (Cyanocobalamin) using microencapsulation by spray chilling technique. Food Research International, 126, 108663. https://doi.org/10.1016/j.foodres.2019.108663.

    Article  CAS  Google Scholar 

  • Chang, Y. H., Lee, S. Y., & Kwak, H.-S. (2016). Physicochemical and sensory properties of milk fortified with iron microcapsules prepared with water-in-oil-in-water emulsion during storage. International Journal of Dairy Technology, 69(3), 452–459. https://doi.org/10.1111/1471-0307.12282.

    Article  CAS  Google Scholar 

  • Chapeau, A.-L., Tavares, G. M., Hamon, P., Croguennec, T., Poncelet, D., & Bouhallab, S. (2016). Spontaneous co-assembly of lactoferrin and b-lactoglobulin as a promising biocarrier for vitamin B9. Food Hydrocolloids, 57, 280–290. https://doi.org/10.1016/j.foodhyd.2016.02.003.

    Article  CAS  Google Scholar 

  • Charcosset, C., Limayem, I., & Fessi, H. (2004). The membrane emulsification process—a review. Journal of Chemical Technology and Biotechnology, 79(3), 209–218. https://doi.org/10.1002/jctb.969.

    Article  CAS  Google Scholar 

  • ChemAxon (2020). https://chemaxon.com/. Accessed 19 July 2020.

  • Christakos, S., Dhawan, P., Porta, A., Mady, L. J., & Seth, T. (2011). Vitamin D and intestinal calcium absorption. Molecular and Cellular Endocrinology, 347(1-2), 25–29. https://doi.org/10.1016/j.mce.2011.05.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu, L. Y., Utada, A. S., Shah, R. K., Kim, J. W., & Weitz, D. A. (2007). Controllable monodisperse multiple emulsions. Angewandte Chemie (International Ed. in English), 46(47), 8970–8974. https://doi.org/10.1002/anie.200701358.

    Article  CAS  Google Scholar 

  • Conchouso, D., Castro, D., Khan, S. A., & Foulds, L. G. (2014). Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions. Lab on a Chip, 14(16), 3011–3020. https://doi.org/10.1039/C4LC00379A.

    Article  CAS  PubMed  Google Scholar 

  • Conrad, M. E., & Umbreit, J. N. (1993). A concise review: iron absorption—the mucin-mobilferrin-integrin pathway. A competitive pathway for metal absorption. American Journal of Hematology, 42(1), 67–73. https://doi.org/10.1002/ajh.2830420114.

    Article  CAS  PubMed  Google Scholar 

  • Csáky, T. Z. (2012). Pharmacology of intestinal permeation II: Springer Science & Business Media.

  • Dalgeish, D. G. (2006). Food emulsions-their structures and structure-forming properties. Food Hydrocolloids, 20(4), 415–422. https://doi.org/10.1016/j.foodhyd.2005.10.009.

    Article  CAS  Google Scholar 

  • Davidsson, L., Walczyk, T., Morris, A., & Hurrel, R. F. (1998). Influence of ascorbic acid on iron absorption from an iron-fortified, chocolate-flavoured milk drink in Jamaican children. The American Journal of Clinical Nutrition, 67(5), 873–877. https://doi.org/10.1093/ajcn/67.5.873.

    Article  CAS  PubMed  Google Scholar 

  • Davidsson, L., Kastenmayer, P., Szajewska, H., Hurrel, R. F., & Barclay, D. (2000). Iron bioavailability in infants from an infant cereal fortified with ferric pyrophosphate or ferrous fumarate. The American Journal of Clinical Nutrition, 71(6), 1597–1602. https://doi.org/10.1093/ajcn/71.6.1597.

    Article  CAS  PubMed  Google Scholar 

  • Derman, D. P., Bothwell, T. H., Mac Phail, A. P., Torrance, J. D., Bezwoda, W. R., Charlton, R. W., et al. (1980). Importance of ascorbic acid in the absorption of iron from infant foods. Scandinavian Journal of Haematology, 25(3), 193–201. https://doi.org/10.1111/j.1600-0609.1981.tb01388.x.

    Article  CAS  PubMed  Google Scholar 

  • Dickinson, E. (2009). Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids, 23(6), 1473–1482. https://doi.org/10.1016/j.foodhyd.2008.08.005.

    Article  CAS  Google Scholar 

  • Dietschy, J. M. (1978). Malabsorption syndromes. In T. E. Andreoli, J. F. Hoffman, & D. D. Fanetsi (Eds.), Physiology of Membrane Disorders (pp. 901–917). New York: Plenum Publishing Corporation.

    Chapter  Google Scholar 

  • Dima, C., & Dima, S. (2018). Water-in-oil-in-water double emulsions loaded with chlorogenic acid: release mechanisms and oxidative stability. Journal of Microencapsulation, 35(6), 584–599. https://doi.org/10.1080/02652048.2018.1559246.

    Article  CAS  PubMed  Google Scholar 

  • Dima, C., & Dima, S. (2020). Bioaccessibility study of calcium and vitamin D3 co-microencapsulated in water-in-oil-in-water double emulsions. Food Chemistry, 303, 125416. https://doi.org/10.1016/j.foodchem.2019.125416.

    Article  CAS  PubMed  Google Scholar 

  • Ding, S., Serra, C. A., Vandamme, T. F., Yu, W., & Anton, N. (2019). Double emulsions prepared by two-step emulsification: history, state-of-the-art and perspective. Journal of Controlled Release, 295, 31–49. https://doi.org/10.1016/j.jconrel.2018.12.037.

    Article  CAS  PubMed  Google Scholar 

  • Diosady, L. L., & Dueik, V. P. (2017). Iron-fortified tea preparations. (Vol. WO2017054084A1).

  • Diosady, L. L., Venkatesh Mannar, M. G., & Krishnaswamy, K. (2019). Improving the lives of millions through new double fortification of salt technology. Maternal & Child Nutrition, 15(S3), e12773. https://doi.org/10.1111/mcn.12773.

    Article  Google Scholar 

  • Dockx, G., Geisel, S., Moore, D. G., Koos, E., Studart, A. R., & Vermant, J. (2018). Designer liquid-liquid interfaces made from transient double emulsions. Nature Communications, 9(1), 4763. https://doi.org/10.1038/s41467-018-07272-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drioli, E., Criscuoli, A., & Curcio, E. (2006). Membrane contacters: fundamentals, applications and potentialities. The Netherlands: Elsevier B.V.

    Google Scholar 

  • DrugBank (2020). https://www.drugbank.ca/. Accessed 19 July 2020.

  • Dueik, V., Chen, B. K., & Diosady, L. L. (2017). Iron-polyphenol interaction reduces iron bioavailability in fortified tea: competing complexation to ensure iron bioavailability. Journal of Food Quality, 2017, 1–7. https://doi.org/10.1155/2017/1805047.

    Article  CAS  Google Scholar 

  • Duque-Estrada, P., School, E., Van der Goot, A. J., & Berton-Carabin, C. C. (2019). Double emulsions for iron encapsulation: is a high concentration of lipophilic emulsifier ideal for physical and chemical stability? Journal of the Science of Food and Agriculture, 99(10), 4540–4549. https://doi.org/10.1002/jsfa.9691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisinaite, V., Juraite, D., Schroën, K., & Leskauskaite, D. (2016). Preparation of stable food-grade double emulsions with a hybrid premix membrane emulsification system. Food Chemistry, 206, 59–66. https://doi.org/10.1016/j.foodchem.2016.03.046.

  • Estevinho, B. N., Carlan, I., Blaga, A., & Rocha, F. (2016). Soluble vitamins (vitamin B12 and vitamin C) microencapsulated with different biopolymers by a spray drying process. Powder Technology, 289, 71–78. https://doi.org/10.1016/j.powtec.2015.11.019.

    Article  CAS  Google Scholar 

  • Fairweather-Tait, S. J., & Southon, S. (2003). Bioavailability of nutrients. In Encyclopedia of Sciences and Nutrition (pp. 478-484).

  • Fairweather-Tait, S. J., Minski, M. J., & Richardson, D. P. (1983). Iron absorption from a malted cocoa drink fortified with ferric orthophosphate using the stable isotope 58Fe as an extrinsic label. The British Journal of Nutrition, 50(1), 51–60. https://doi.org/10.1079/bjn19830071.

    Article  CAS  PubMed  Google Scholar 

  • Fairweather-Tait, S., Fox, T., Wharf, S. G., & Eagles, J. (1995). The Bioavailability of iron in different weaning foods and the enhancing effect of a fruit drink containing ascorbic acid. Pediatric Research, 37(4), 389–394. https://doi.org/10.1203/00006450-199504000-00002.

    Article  CAS  PubMed  Google Scholar 

  • FAO/WHO (1974). Polyglycerol esters of interestrified ricinoleic acid. http://www.inchem.org/documents/jecfa/jecmono/v05je46.htm. Accessed 30 Sep 2020.

  • Femmer, T., Jans, A., Eswein, R., Anwar, N., Moeller, M., Wessling, M., & Kuehne, A. J. C. (2015). High-throughput generation of emulsions and microgels in parallelized microfluidic drop-makers prepared by rapid prototyping. ACS Applied Materials & Interfaces, 7(23), 12635–12638. https://doi.org/10.1021/acsami.5b03969.

    Article  CAS  Google Scholar 

  • Fernández-García, E., Carvajal-Lérida, I., & Pérez-Gálvez, a. (2009). In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutrition Research, 29(11), 751–760. https://doi.org/10.1016/j.nutres.2009.09.016.

    Article  CAS  PubMed  Google Scholar 

  • Fidler, M. C., & Davidsson, L. (2004). The effect of Na2EDTA on iron absorption from ferrous fumarate. The Journal of Nutrition, 134(5), 1201. https://doi.org/10.1093/jn/134.5.1201.

    Article  CAS  PubMed  Google Scholar 

  • Fidler, M. C., Walczyk, T., Davidsson, L., Zeder, C., Sakaguchi, N., Juneja, L. R. & Hurrell, R. F. (2004). A 2666 micronised, dispersible ferric pyrophosphate with high relative bio- 2667 availability in man. The British Journal of Nutrition, 91(1), 107–2668 112. https://doi.org/10.1079/BJN20041018.

  • Fraj, J., Petrovic, L., Dekic, L., Milinkovic Budincic, J., Bucko, S., & Katona, J. (2021). Encapsulation and release of vitamin C in double W/O/W emulsions followed by complex coacervation in gelatin-sodium caseinate system. Journal of Food Engineering, 292, 110353. https://doi.org/10.1016/j.jfoodeng.2020.110353.

    Article  CAS  Google Scholar 

  • Friedrich, W. (1988). Folic acid and unconjugated pteridinies. In Vitamins. Germany: Walter Gruyter & Co..

    Google Scholar 

  • Gaonkar, A. G. (1994). Stable multiple emulsions comprising interfacial gelatinous layer, flavour-encapsulating multiple emulsions and low/no-fat food products comprising the same. (Vol. 5,332,595): Kraft General Foods, Inc.

  • Garti, N. (2018). Delivery of microparticulted liquid systems in food. In Barenholz, Y. (Ed.), Handbook of Nonmedical Applications of Liposomes: Volume III: From Design to Microreactors: CRC Press.

  • Garti, N., & Benichou, A. (2003). Recent developments in double emulsions for food applications. In Friberg, S. E., Larsson, K.& Sjöblom, J. (Eds.), (Forth ed., Food Emulsions): CRC Press.

  • Garti, N., & Lutz, R. (2004). Recent progress in double emulsions. In In (Emulsions:Structure, Stability and Interactions). The Netherlands: Elsevier Ltd..

    Google Scholar 

  • Garti, N., & Lutz, R. (2006). Double emulsions. In P. Somasundaran (Ed.), Encyclopedia of Surface and Colloidal Science (Second ed.). New York: Taylor and Francis Group, LLC..

    Google Scholar 

  • Gaulin (2019). Gaulin homogenizer. http://gaulinhomogenizer.com/. Accessed 17 May 2019.

  • Gironès-Vilaplana, A., Villano, D., Marhuenda, J., Moreno, D. A., & Garcia-Viguera, C. (2017). Vitamins. In Nutraceutical and functional food components, effects of innovative processing techniques (pp. 159-201).

  • Giroux, H. J., Constantineau, S., Fustier, P., Champagne, C. P., St-Gelais, D., Lacroix, M., & Britten, M. (2013). Cheese fortification using water-in-oil-in-water double emulsions as carrier for water soluble nutrients. International Dairy Journal, 29(2), 107–114. https://doi.org/10.1016/j.idairyj.2012.10.009.

    Article  CAS  Google Scholar 

  • Griffiths, J. K. (2013). Vitamin Deficiencies. In Magill, A. J., Hill, D. R., Solomon, T.& Ryan, E. T. (Eds.), Hunter's tropical medicine and emerging infectious disease (Ninth ed., pp. 997-1002): Elsevier Inc.

  • Gropper, S. S., Smith, J. L., & Groff, J. L. (2008). The water-soluble vitamins. In Advanced Nutrition and human metabolism (5th ed.): Nelson Education.

  • Hackie, L. S., Abizari, A. R., Speich, C., Zungbey-Garti, H., Cercamondi, C. I., Zeder, C., et al. (2019). Micronutrient-fortified rice can be a significant source of dietary bioavailable iron in schoolchildren from rural Ghana. Science Advances, 5(3), eaau0790. https://doi.org/10.1126/sciadv.aau0790.

    Article  CAS  Google Scholar 

  • Hallberg, L., Rossander-Hulthén, L., & Gramatkovski, E. (1989). Iron fortification of flour with a complex ferric orthophosphate. The American Journal of Clinical Nutrition, 50(1), 129–135. https://doi.org/10.1093/ajcn/50.1.129.

    Article  CAS  PubMed  Google Scholar 

  • Halsted, C. H. (2003). Absorption of water-soluble vitamins. Current Opinion in Gastroenterology, 19(2), 113–117. https://doi.org/10.1097/00001574-200303000-00003.

    Article  CAS  PubMed  Google Scholar 

  • Hanson, J. A., Chang, C. B., Graves, S. M., Li, Z., & Mason, T. G. (2008). Nanoscale double emulsions stabilized by single-component block copolypeptides. Nature, 455(7209), 85–88. https://doi.org/10.1038/nature07197.

    Article  CAS  PubMed  Google Scholar 

  • Harris, J. R. (1996). Subcellular biochemistry, ascorbic acid: biochemistry and biochemical cell biology. New York: Plenum Press.

    Book  Google Scholar 

  • Hayashi, K., Yoshida, S., & Kawasaki, T. (1981). Thiamine transport in the brush border membrane vesicles of the guinea-pig jejunum. Biochimica et Biophysica Acta, 641(1), 106–113. https://doi.org/10.1016/0005-2736(81)90573-3.

    Article  CAS  PubMed  Google Scholar 

  • Hinze, J. O. (1955). Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AICHE Journal, 1(3), 289–295.

    Article  CAS  Google Scholar 

  • Hosseini, S. M. H., Hashemi Gahruie, H., Razmjooie, M., Sepeidnameh, M., Rastehmanfard, M., Tatar, M., Naghibalhossaini, F., & van der Meeren, P. (2019). Effects of novel and conventional thermal treatments on the physicochemical properties of iron-loaded double emulsions. Food Chemistry, 270, 70–77. https://doi.org/10.1016/j.foodchem.2018.07.044.

    Article  CAS  PubMed  Google Scholar 

  • Hoyumpa, A. M., Middleton, H. M., Wilson, F. A., & Schenker, S. (1975). Thiamine transport across the rat intestine I. Normal characteristics. Gastroenterology, 68(5 Pt 1), 1218–1227.

    Article  CAS  PubMed  Google Scholar 

  • Hunt, J. R. (2005). Dietary and physiological factors that affect the absorption and bioavailability of iron. International Journal for Vitamin and Nutrition Research, 75(6), 375–384. https://doi.org/10.1024/0300-9831.75.6.375.

    Article  CAS  PubMed  Google Scholar 

  • Hurrell, R. F. (2002). Fortification: overcoming technical and practical barriers. The Journal of Nutrition, 132(4), 806S–812S. https://doi.org/10.1093/jn/132.4.806S.

    Article  CAS  PubMed  Google Scholar 

  • Hurrell, R. F., Furniss, D. E., Burri, J., Whittaker, P., Lynch, S. R., & Cook, J. D. (1989). Iron fortification of infant cereals: a proposal for the use of ferrous fumarate or ferrous succinate. The American Journal of Clinical Nutrition, 49(6), 1274–1282. https://doi.org/10.1093/ajcn/49.6.1274.

    Article  CAS  PubMed  Google Scholar 

  • Hurrell, R. F., Reddy, M. B., Dassenko, S. A., & Cook, J. D. (1991). Ferrous fumarate fortification of a chocolate drink powder. The British Journal of Nutrition, 65(2), 271–283. https://doi.org/10.1079/bjn19910086.

    Article  CAS  PubMed  Google Scholar 

  • Hurrell, R. F., Reddy, M. B., Burri, J., & Cook, J. D. (2000). An evaluation of EDTA compounds for iron fortification of cereal-based foods. The British Journal of Nutrition, 84(6), 903–910. https://doi.org/10.1017/S0007114500002531.

    Article  CAS  PubMed  Google Scholar 

  • Ilyasoglu Buyukkestelli, H., & Nehir El, S. (2019). Development and characterization of double emulsion to encapsulate iron. Journal of Food Engineering, 263, 446–453. https://doi.org/10.1016/j.jfoodeng.2019.07.026.

    Article  CAS  Google Scholar 

  • Ishiguro, E., Haskey, N., & Campbell, K. (2018). Impact of nutrition on the gut microbiota. In Gut Microbiota, Interactive Effects on Nutrition and Health (pp. 105-131): Elsevier Inc.

  • Jafari, S. M., & McClements, D. J. (2018). Part III. Production of nanoemulsions by mechanical methods. In Nanoemulsions: formulation, application and characterization: Elsevier Inc.

  • Jeong, H.-H., Yelleswarapu, V. R., Yadavali, S., Issadore, D., & Lee, D. (2015). Kilo-scale droplet generation in three-dimensional monolithic elastomer device (3D MED). Lab on a Chip, 15(23), 4387–4392. https://doi.org/10.1039/C5LC01025J.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, H.-H., Issadore, D., & Lee, D. (2016). Recent developments in scale-up of microfluidic emulsion generation via parallelization. Korean Journal of Chemical Engineering, 33(6), 1757–1766. https://doi.org/10.1007/s11814-016-0041-6.

    Article  CAS  Google Scholar 

  • Jiao, J., & Burgess, D. J. (2008). Multiple emulsion stability: pressure balance and interfacial film strength. In A. Aserin (Ed.), Multiple Emulsion: Technology and Applications. USA and Canada: John Wiley & Sons Inc..

    Google Scholar 

  • Jo, Y. J., Karbstein, H. P., & van der Schaaf, U. S. (2019). Collagen peptide-loaded W1/O single emulsions and W1/O/W2 double emulsions: influence of collagen peptide and salt concentration, dispersed phase fraction and type of hydrophilic emulsifier on droplet stability and encapsulation efficiency. Food & Function, 10(6), 3312–3323. https://doi.org/10.1039/c8fo02467g.

    Article  CAS  Google Scholar 

  • Johns, P. W., Patel, G. C., Parker, M. E., Lasekan, J. B., Milani, P., Nixon, M. K., et al. (2015). Evaluation of the effect of Ultra Rice®EDTA supplementation on the soluble iron, visual acceptance and vitamin A stability of commercial milled rice blends. International Journal of Food Science and Technology, 50(7), 1615–1624. https://doi.org/10.1111/ijfs.12815.

    Article  CAS  Google Scholar 

  • Kailasapathy, K. (2016). Bioencapsulation technologies for incorporating bioactive components into functional foods. In Ravishankar, R. V. (Ed.), Advances in Food Biotechnology: John Wiley & Sons.

  • Kang, K.-K., Lee, B., & Lee, C.-S. (2018). Microfluidic approaches for the design of functional materials. Microelectronic Engineering, 199, 1–15. https://doi.org/10.1016/j.mee.2018.07.007.

    Article  CAS  Google Scholar 

  • Karbstein, H. P., & Schubert, H. (1995). Developments in the continuous mechanical production of oil-in-water macro-emulsions. Chemical Engineering and Processing, 34(3), 205–211. https://doi.org/10.1016/0255-2701(94)04005-2.

    Article  CAS  Google Scholar 

  • Kersiene, M., Jasutiene, I., Eisinaite, V., Rimantas Venskutonis, P., & Leskauskaitè, D. (2020). Designing multiple bioactives loaded emulsions for the formulations for diets of elderly. Food & Function, 11(3), 2195–2207. https://doi.org/10.1039/D0FO00021C.

    Article  CAS  Google Scholar 

  • Khadem, B., & Sheibat-Othman, N. (2019). Theoretical and experimental investigations of double emulsion preparation by ultrasonication. Industrial and Engineering Chemistry Research, 58(19), 8220–8230. https://doi.org/10.1021/acs.iecr.9b00556.

    Article  CAS  Google Scholar 

  • Khadem, B., Khellaf, M., & Sheibat-Othman, N. (2020). Investigating swelling-breakdown in double emulsions. Colloid Surface A, 585, 124181. https://doi.org/10.1016/j.colsurfa.2019.124181.

    Article  CAS  Google Scholar 

  • Khalid, N., Kobayashi, I., Neves, M. A., Uemura, K., Nakajima, M., & Nabetani, H. (2014). Monodisperse W/O/W emulsions encapsulating l-ascorbic acid: insights on their formulation using microchannel emulsification and stability studies. Colloid Surface A, 458, 69–77. https://doi.org/10.1016/j.colsurfa.2014.04.019.

    Article  CAS  Google Scholar 

  • Kheynoor, N., Hosseini, S. M. H., Yousefi, G.-H., Hashemi Gahruie, H., & Mesbahi, G.-R. (2018). Encapsulation of vitamin C in a rebaudioside-sweetened model beverage using water in oil in water double emulsions. LWT- Food Science and Technology, 96, 419–425. https://doi.org/10.1016/j.lwt.2018.05.066.

    Article  CAS  Google Scholar 

  • Khurana, I., Khurana, A., & Gurukripa Kowlgi, N. (2019). Gastrointestinal system. In Textbook of Medical Physiology (3rd ed.): Elsevier Health Sciences.

  • Kim, J., & Lee, C.-S. (2018). Microfluidic approaches for designing multifunctional polymeric microparticles from simple emulsions to complex particles. In Song, Y., Cheng, D.& Zhao, L. (Eds.), Microfluidics: fundamentals, devices, and applications: John Wiley & Sons.

  • Knezevict, Z., Goskat, D., Hraste, M., & Jalsenjako, I. (1998). Fluid-bed microencapsulation of ascorbic acid. Journal of Microencapsulation, 15(2), 237–252. https://doi.org/10.3109/02652049809006853.

    Article  Google Scholar 

  • Köhler, K., Aguilar, F., Hensel, A., Schubert, K., Schubert, H., & Schuchmann, H. P. (2007). Design of a microstructured system for homogenization of dairy products with high fat content. Chemical Engineering and Technology, 30(11), 1590–1595. https://doi.org/10.1002/ceat.200700266.

    Article  CAS  Google Scholar 

  • Köhler, K., Karasch, S., Schuchmann, H. P., & Kulozik, U. (2008). Energiesparende Homogenisierung von Milch mit etablierten sowie neuartigen Verfahren. Chemie Ingenieur Technik, 80(8), 1107–1116. https://doi.org/10.1002/cite.200800070.

    Article  CAS  Google Scholar 

  • Komaiko, J. (2016). Optimization of the fabrication, stability, and performance of food grade nanoemulsions with low and high energy methods. Amherst: University of Massachusetts Amherst.

    Google Scholar 

  • Kono, N., & Arai, H. (2015). Intracellular transport of fat-soluble vitamins A and E. Traffic, 16(1), 19–34. https://doi.org/10.1111/tra.12231.

    Article  CAS  PubMed  Google Scholar 

  • Koubaa, M., Roohinejad, S., Sharma, P., Nikmaram, N., Hashemi, S. S., Abbaspourrad, A., Greiner R. (2018). Multiple emulsions. In Emulsion-based Systems for Delivery of Food Active Compounds:Formation, Application, Health and Safety: Joh Wiley & Sons Ltd.

  • Kumar, D. S. (2018). Advances in food fortification with phytonutrients. In A. Saeid (Ed.), Food Biofortification Technologies. Boca Raton: Taylor & Francis Group, LLC..

    Google Scholar 

  • Kwon, Y. (2001). Handbook of Essential Pharmacokinetics, Pharacodynamics and Drug Metabolism for Industrial Scientists. New York: Springer Science & Business Media.

    Google Scholar 

  • Layrisse, M., Garcia-Casal, M. N., Solano, L., Adela Barón, M., Arguello, F., Llovera, D., et al. (2000). Iron bioavailability in humans from breakfasts enriched with iron bis-glycine chelate, phytates and polyphenols. The Journal of Nutrition, 130(9), 2195–2199. https://doi.org/10.1093/jn/130.9.2195.

    Article  CAS  PubMed  Google Scholar 

  • Leister, N., & Karbstein, H. P. (2020). Evaluating the stability of double emulsions—a review of the measurement techniques for the systematic investigation of instability mechanisms. Colloids Interfaces, 4(1), 8. https://doi.org/10.3390/colloids4010008.

    Article  CAS  Google Scholar 

  • Leong, T. S. H., Zhou, M., Kukan, N., Ashokkumar, M., & Martin, G. J. O. (2017). Preparation of water-in-oil-in-water emulsions by low frequency ultrasound using skim milk and sunflower oil. Food Hydrocolloids, 63, 685–695. https://doi.org/10.1016/j.foodhyd.2016.10.017.

    Article  CAS  Google Scholar 

  • Leong, T. S. H., Martin, G. J. O., & Ashokkumar, M. (2018a). Ultrasonic food processing. In A. Proctor (Ed.), Alternatives to Conventional Food Processing. UK: The Royal Society of Chemistry.

    Google Scholar 

  • Leong, T. S. H., Zhou, M., Zhou, D., Ashokkumar, M., & Martin, G. J. O. (2018b). The formation of double emulsions in skim milk using minimal food-grade emulsifiers—a comparison between ultrasonic and high pressure homogenisation efficiencies. Journal of Food Engineering, 219, 81–92. https://doi.org/10.1016/j.jfoodeng.2017.09.018.

    Article  CAS  Google Scholar 

  • Li, Y. O., Dueik González, V. P., & Diosady, L. L. (2014a). Microencapsulation of vitamins, minerals, and nutraceuticals for food applications. In Gaonkar, A. G., Vasisht, N., Khare, A. R., & Sobel, R. (Eds.), Microencapsulation in the Food Industry, A Practical Implementation Guide (pp. 501-522): Elsevier Inc.

  • Li, Z., Liu, H., Zeng, L., Liu, H., Yang, S., & Wang, Y. (2014b). Preparation of high internal water-phase double emulsions stabilized by a single anionic surfactant for fabricating interconnecting porous polymer microspheres. Langmuir, 30(41), 12154–12163. https://doi.org/10.1021/la502564r.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Q., Liang, R., Ye, A., Singh, H., & Zhong, F. (2017). Effects of calcium on lipid digestion in nanoemulsions stabilized by modified starch: implications for bioaccessibility of β-carotene. Food Hydrocolloids, 73, 184–193. https://doi.org/10.1016/j.foodhyd.2017.06.024.

    Article  CAS  Google Scholar 

  • Lindenstruth, K., & Müller, B. W. (2004). W/O/W multiple emulsions with diclofenac sodium. European Journal of Pharmaceutics and Biopharmaceutics, 58(3), 621–627. https://doi.org/10.1016/j.ejpb.2004.04.003.

    Article  CAS  PubMed  Google Scholar 

  • Luhede, L., Wollborn, T., & Fritsching, U. (2019). Stability of multiple emulsions under shear stress. Canadian Journal of Chemical Engineering, 98(1), 186–193. https://doi.org/10.1002/cjce.23578.

    Article  CAS  Google Scholar 

  • Mann, J., & Truswell, A. S. (2017). Organic and inorganic essential nutrients. In Essentials of Human Nutrition. Oxford: Oxford University Press.

    Google Scholar 

  • Manzetti, S., Zhang, J., & Van der Spoel, D. (2014). Thiamin function, metabolism, uptake, and transport. Biochemistry, 53(5), 821–835. https://doi.org/10.1021/bi401618y.

    Article  CAS  PubMed  Google Scholar 

  • Matos, M., Gutiérrez, G., Iglesias, O., Coca, J., & Pazos, C. (2015). Enhancing encapsulation efficiency of food-grade double emulsions containing resveratrol or vitamin B12 by membrane emulsification. Journal of Food Engineering, 166, 212–220. https://doi.org/10.1016/j.jfoodeng.2015.06.002.

    Article  CAS  Google Scholar 

  • Matsumoto, S. (1986). W/O/W-type multiple emulsions with a view to possible food applications. Journal of Texture Studies, 17(2), 141–159. https://doi.org/10.1111/j.1745-4603.1986.tb00401.x.

    Article  CAS  Google Scholar 

  • McClements, D. J. (2010). Emulsion design to improve the delivery of functional lipophilic components. Annual Review of Food Science and Technology, 1(1), 241–269. https://doi.org/10.1146/annurev.food.080708.100722.

    Article  CAS  PubMed  Google Scholar 

  • McClements, D. J. (2016). Food emulsions, principles, practices, and techniques (3rd ed.). Boca Raton: Taylor & Francis Group LLC..

    Google Scholar 

  • McGee, E. J. T., & Diosady, L. L. (2018). Prevention of iron-polyphenol complex formation by chelation in black tea. LWT- Food Science and Technology, 89, 756–762. https://doi.org/10.1016/j.lwt.2017.11.041.

    Article  CAS  Google Scholar 

  • McGregor, R. A., & Seo, D. Y. (2016). miRNAs as nutritional targets in aging. In Malavolta, M.& Mocchegiani, E. (Eds.), Molecular Basis of Nutrition and Aging, A Volume in the Molecular Nutrition Series (pp. 277-291): Elsevier Inc.

  • Medeiros, D. M., & Wildman, R. E. C. (2015). Fat-soluble vitamins. In In Advanced Human Nutrition. Burlington: Jones & Bartlett Learning, LLC.

    Google Scholar 

  • Mendoza, C., Viteri, F. E., Lönnerdal, B., Raboy, V., Young, K. A., & Brown, K. H. (2001). Absorption of iron from unmodified maize and genetically altered, low-phytate maize fortified with ferrous sulfate or sodium iron EDTA. The American Journal of Clinical Nutrition, 73(1), 8–85. https://doi.org/10.1093/ajcn/73.1.80.

    Article  Google Scholar 

  • Mezzenga, R., Folmer, B. M., & Hughes, E. (2004). Design of double emulsions by osmotic pressure tailoring. Langmuir, 20(9), 3574–3582. https://doi.org/10.1021/la036396k.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, M. (2016). Handbook of encapsulation and controlled release. Boca Raton: Taylor & Francis Group, LLC..

    Google Scholar 

  • Mootoosingh, K. S. T., & Rousseau, D. (2006). Emulsions for the delivery of nutraceutical lipids. In Shahidi, F. (Ed.), Nutraceutical and Specialty Lipids and their Co-products: Taylor & Francis Group, LLC.

  • Mujica-Alvarez, J., Gil-Castell, O., Barra, P. A., Ribes-Greus, A., Bustos, R., Faccini, M., et al. (2020). Encapsulation of vitamins A and E as spray-dried additives for the feed industry. Molecules, 25(6), 1357. https://doi.org/10.3390/molecules25061357.

    Article  CAS  PubMed Central  Google Scholar 

  • Muluneh, M., & Issadore, D. (2013). Hybrid soft-lithography/laser machined microchips for the parallel generation of droplets. Lab on a Chip, 13(24), 4750–4754. https://doi.org/10.1039/C3LC50979F.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muschioloik, G., & Dickinson, E. (2017). Double emulsions relevant to food systems: preparation, stability, and applications. Comprehensive Reviews in Food Science and Food Safety, 16(3), 532–555. https://doi.org/10.1111/1541-4337.12261.

    Article  CAS  Google Scholar 

  • Nalawade, T., Chavan, R. S., & Joshi, A. (2017). Rheological characterization of fruit fillings. In M. Meghwal, M. R. Goyal, & R. S. Chavan (Eds.), Dairy Engineering, Advanced Technologies and Their Applications. USA: Apple Academic Press Inc..

    Google Scholar 

  • Nawar, S., Stolaroff, J. K., Ye, C., Wu, H., Nguyen, D. T., Xin, F., & Weitz, D. A. (2020). Parallelizable microfluidic dropmakers with multilayer geometry for the generation of double emulsions. Lab on a Chip, 20(1), 147–154. https://doi.org/10.1039/C9LC00966C.

    Article  CAS  PubMed  Google Scholar 

  • Nazir, A., Schroën, K., & Boom, R. (2010). Premix emulsification: a review. Journal of Membrane Science, 362(1-2), 1–11. https://doi.org/10.1016/j.memsci.2010.06.044.

    Article  CAS  Google Scholar 

  • Neumann, S. M., Scherbej, I., van der Schaaf, U. S., & Karbstein, H. P. (2018a). Investigations on the influence of osmotic active substances on the structure of water in oil emulsions for the application as inner phase in double emulsions. Colloid Surface A, 538, 56–62. https://doi.org/10.1016/j.colsurfa.2017.10.073.

    Article  CAS  Google Scholar 

  • Neumann, S. M., Wittstock, N., van der Schaaf, U. S., & Karbstein, H. P. (2018b). Interactions in water in oil in water double emulsions: systematical investigations on the interfacial properties and emulsion structure of the outer oil in water emulsion. Colloid Surface A, 537, 524–531. https://doi.org/10.1016/j.colsurfa.2017.10.070.

    Article  CAS  Google Scholar 

  • Nguyen-Tri, P., Do, T.-O., & Nguyen, T. A. (2020). Application for drug delivery. In Smart Nanocontainers: Elsevier Inc.

  • Nisisako, T., & Torii, T. (2008). Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab on a Chip, 8(2), 287–293. https://doi.org/10.1039/B713141K.

    Article  CAS  PubMed  Google Scholar 

  • Nisisako, T., Ando, T., & Hatsuzawa, T. (2012). High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces. Lab on a Chip, 12(18), 3426–3435. https://doi.org/10.1039/C2LC40245A.

    Article  CAS  PubMed  Google Scholar 

  • Nollet, M., Mercé, M., Laurichesse, E., Pezon, A., Soubabère, O., Besse, S., & Schmitt, V. (2016). Water fluxes and encapsulation efficiency in double emulsions: impact of emulsification and osmotic pressure unbalance. Soft Matter, 12(14), 3412–3424. https://doi.org/10.1039/C5SM03089G.

    Article  CAS  PubMed  Google Scholar 

  • Nollet, M., Laurichesse, E., Besse, S., Soubabère, O., & Schmitt, V. (2018). Determination of formulation conditions allowing double emulsions stabilized by PGPR and sodium caseinate to be used as capsules. Langmuir, 34(8), 2823–2833. https://doi.org/10.1021/acs.langmuir.7b04085.

    Article  CAS  PubMed  Google Scholar 

  • Okushima, S., Nisisako, T., Torii, T., & Higuchi, T. (2004). Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir, 20(23), 9905–9908. https://doi.org/10.1021/la0480336.

    Article  CAS  PubMed  Google Scholar 

  • Oppermann, A. K. L., Noppers, J. M. E., Stieger, M., & Scholten, E. (2018). Effect of outer water phase composition on oil droplet size and yield of (w1/o/w2) double emulsions. Food Research International, 107, 148–157. https://doi.org/10.1016/j.foodres.2018.02.021.

    Article  CAS  PubMed  Google Scholar 

  • Pang, Y., Kim, H., Liu, Z., & Stone, H. A. (2014). A soft microchannel decreases polydispersity of droplet generation. Lab on a Chip, 14(20), 4029–4034. https://doi.org/10.1039/C4LC00871E.

    Article  CAS  PubMed  Google Scholar 

  • Peinado, R. D. S., Olivier, D. S., Eberle, R. J., de Moraes, F. R., Amaral, M. S., Arni, R. K., et al. (2019). Binding studies of a putative C. pseudotuberculosis target protein from Vitamin B12 Metabolism. Scientific Reports, 9(1), 6350. https://doi.org/10.1038/s41598-019-42935-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petry, N., Egli, I., Zeder, C., Walczyk, T., & Hurrell, R. F. (2010). Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. The Journal of Nutrition, 140(11), 1977–1982. https://doi.org/10.3945/jn.110.125369.

    Article  CAS  PubMed  Google Scholar 

  • Preedy, V. R., Srirajaskanthan, R., & Patel, V. B. (2013). Handbook of Food fortification and Health: From Concepts to Public Health Applications (Vol. 1). New York: Springer Science+Business Media.

    Book  Google Scholar 

  • Prichapan, N., McClements, D. J., & Klinkesorn, U. (2020). Encapsulation of iron within W1/O/W2 emulsions formulated using a natural hydrophilic surfactant (saponin): impact of surfactant level and oil phase crystallization. Food Biophysics, 15(3), 346–354. https://doi.org/10.1007/s11483-020-09628-w.

    Article  Google Scholar 

  • Prichapan, N., McClements, D. J., & Klinkesorn, U. (2021). Utilization of multilayer-technology to enhance encapsulation efficiency and osmotic gradient tolerance of iron-loaded W1/O/W2 emulsions: Saponin-chitosan coatings. Food Hydrocolloids, 112, 106334. https://doi.org/10.1016/j.foodhyd.2020.106334.

    Article  CAS  Google Scholar 

  • Protat, M., Bodin, N., Gobeaux, F., Mallogi, F., Daillant, J., Pantoustier, N., et al. (2016). Biocompatible stimuli-responsive W/O/W multiple emulsions prepared by one-step mixing with a single diblock copolymer emulsifier. Langmuir, 32(42), 10912–10919. https://doi.org/10.1021/acs.langmuir.6b02590.

    Article  CAS  PubMed  Google Scholar 

  • Proytcheva, M. A. (2011). Diagnostic Pediatric Hematopathology. New York: Cambridge University Press.

    Book  Google Scholar 

  • Reboul, E. (2017). Vitamin E bioavailability: mechanisms of intestinal absorption in the spotlight. Antioxidants (Basel), 6(4), 95. https://doi.org/10.3390/antiox6040095.

    Article  CAS  Google Scholar 

  • Ribeiro, H. S., Janssen, J. J. M., Kobayashi, I., & Nakajima, M. (2011). Membrane emulsification for food applications. In Peinemann, K.-V., Pereira Nunes, S.& Giorno, L. (Eds.), Membranes for Food Applications: John Wiley & Sons.

  • Rotem, A., Abate, A. R., Utada, A. S., Van Steijn, V., & Weitz, D. A. (2012). Drop formation in non-planar microfluidic devices. Lab on a Chip, 12(21), 4263–4268. https://doi.org/10.1039/c2lc40546f.

    Article  CAS  PubMed  Google Scholar 

  • Saffarionpour, S. (2019). Preparation of food flavor nanoemulsions by high- and low-energy emulsification approaches. Food Engineering Reviews, 11(4), 259–289. https://doi.org/10.1007/s12393-019-09201-3.

    Article  Google Scholar 

  • Saha, S., Roy, A., & Roy, M. N. (2016). Study to explore the mechanism to form inclusion complexes of β-cyclodextrin with vitamin molecules. Scientific Reports, 6(1), 35764. https://doi.org/10.1038/srep35764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvia-Trujillo, L., Fumiaki, B., Park, Y., & McClements, D. J. (2017). The influence of lipid droplet size on the oral bioavailability of vitamin D2 encapsulated in emulsions: an in vitro and in vivo study. Food & Function, 8(2), 767–777. https://doi.org/10.1039/C6FO01565D.

    Article  CAS  Google Scholar 

  • Samba-Mondonga, M., Constante, M., Fragoso, G., Calvé, A., & Santos, M. M. (2019). Curcumin induces mild anemia in a DSS-induced colitis mouse model maintained on an iron-sufficient diet. PlosOne, 14(4), e0208677. https://doi.org/10.1371/journal.pone.0208677.

    Article  CAS  Google Scholar 

  • Sanchez-Moreno, C., & Jimenez-Escrig, A. (2013). B Vitamins (Folate, B6 and B12) in relation to stroke and its cognitive decline. In V. R. Preedy (Ed.), B Vitamins and Folate: Chemistry, Analysis, Function and Effects. UK: Royal Society of Chemistry.

    Google Scholar 

  • Sastre, A. M., Pabby, A. K., & Rizvi, S. S. H. (2009). Membrane applications in chemical and pharmaceutical industries and in conversion of natural resources:introduction. In A. K. Pabby, S. S. H. Rizvi, & A. M. Sastre (Eds.), Handbook of Membrane Separations, Chemical, Pharmaceutical, Food, and Biotechnological Applications. Boca Raton: Taylor & Francis Group, LLC..

    Google Scholar 

  • Schadler, V., & Windhab, E. J. (2006). Continuous membrane emulsification by using a membrane system with controlled pore distance. Desalination, 189(1-3), 130–135. https://doi.org/10.1016/j.desal.2005.06.020.

    Article  CAS  Google Scholar 

  • Scherze, I., Knoth, A., & Muschiolik, G. (2006). Effect of emulsification method on the properties of lecithin- and PGPR-stabilized water-in-oil-emulsions. Journal of Dispersion Science and Technology, 27(4), 427–434. https://doi.org/10.1080/01932690500357081.

    Article  CAS  Google Scholar 

  • Schramm, L. L. (2014). Colloid rheology. In In Emulsions, Foams, Suspensions, and Aerosols: Microscience and Applications. Weinheim: Wiley-VCH Verlag GmbH & Co..

    Chapter  Google Scholar 

  • Schroën, K. C. G. P. H., Van Rijn, C. J. M., & Boom, R. M. (2012). Membrane emulsification current state of affiares and future challenges. In K. Mohanty & M. K. Purkait (Eds.), Membrane Technologies and Applications. Boca Raton: Taylor & Francis Group, LLC..

    Google Scholar 

  • Schuch, A., Deiters, P., Henne, J., Köhler, K., & Schuchmann, H. P. (2013). Production of W/O/W (water-in-oil-in-water) multiple emulsions: droplet breakup and release of water. Journal of Colloid and Interface Science, 402, 157–164. https://doi.org/10.1016/j.jcis.2013.03.066.

    Article  CAS  PubMed  Google Scholar 

  • Schuch, A., Leal, L. G., & Schuchmann, H. P. (2014a). Production of W/O/W double emulsions. Part I: visual observation of deformation and breakup of double emulsion drops and coalescence of the inner droplets. Colloid Surface A, 461, 336–343. https://doi.org/10.1016/j.colsurfa.2013.11.043.

    Article  CAS  Google Scholar 

  • Schuch, A., Wrenger, J., & Schuchmann, H. P. (2014b). Production of W/O/W double emulsions. Part II: influence of emulsification device on release of water by coalescence. Colloid Surface A, 461, 344–351. https://doi.org/10.1016/j.colsurfa.2013.11.044.

    Article  CAS  Google Scholar 

  • Schuch, A., Helfenritter, C., Funck, M., & Schuchmann, H. P. (2015). Observations on the influence of different biopolymers on coalescence of inner water droplets in W/O/W (water-in-oil-in-water) double emulsions. Colloid Surface A, 475, 2–8. https://doi.org/10.1016/j.colsurfa.2014.06.012.

    Article  CAS  Google Scholar 

  • Schuchmann, H. P., & Schuchmann, H. (2012). Lebensmittel-verfahrenstechnik, Rohstoffe, Prozese, Produkte: John Wiley & Sons.

  • Selhub, J., Powell, G. M., & Rosenberg, I. H. (1984). Intestinal transport of 5-methyltetrahydrofolate. Am Physiol-Gastr L., 246(5), G515–G520. https://doi.org/10.1152/ajpgi.1984.246.5.G515.

    Article  CAS  Google Scholar 

  • Shah, R. K., Shum, H. C., Rowat, A. C., Lee, D., Agresti, J. J., Utada, A. S., Chu, L. Y., Kim, J. W., Fernandez-Nieves, A., Martinez, C. J., & Weitz, D. A. (2008). Designer emulsions using microfluidics. Materials Today, 11(4), 18–27. https://doi.org/10.1016/s1369-7021(08)70053-1.

    Article  CAS  Google Scholar 

  • Shahid, M., & Nunhuck, A. (2008). Physiology of the gastrointestinal system. In Physiology: Elsevier Health Sciences.

  • Shinoda, K., & Saito, H. (1969). The stability of O/W type emulsions as functions of temperature and the HLB of emulsifiers: the emulsification by PIT- method. Journal of Colloid and Interface Science, 30(2), 258–263.

    Article  CAS  Google Scholar 

  • Simiqueli, A. A., Filho, T. L., Minim, L. A., de Oliveira, E. B., Vieira Torres, I., Teixeira Ribeiro Vidigal, M. C., et al. (2019). The W/O/W emulsion containing FeSO4 in the different phases alters the hedonic thresholds in milk-based dessert. LWT- Food Science and Technology, 99, 98–104. https://doi.org/10.1016/j.lwt.2018.09.020.

    Article  CAS  Google Scholar 

  • Sorkun, M. C., Khetan, A., & Er, S. (2019). AqSolDB, a curated reference set of aqueous solubility and 2D descriptors for a diverse set of compounds. Scientific Data, 6, 143. https://doi.org/10.1038/s41597-019-0151-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunuwar, D. R., Singh, D. R., Chaudhary, N. K., Pradhan, P. M. S., & Rai, P. (2020). Prevalence and factors associated with anemia among women of reproductive age in seven South and Southeast Asian countries: evidence from nationally representative surveys. PlosOne, 15(8), e0236449. https://doi.org/10.1371/journal.pone.0236449.

    Article  CAS  Google Scholar 

  • Szudzik, M., Starzynski, R. R., Jonczy, A., Mazgaj, R., Lenartowicz, M., & Lipnski, P. (2019). Correction:Mateusz, S.et al. Iron supplementation in suckling piglets: an ostensibly easy therapy of neonatal iron deficiency anemia. Pharaceuticals 2018, 11, 128. Pharmaceuticals (Basel), 12(1), 22, doi:https://doi.org/10.3390/ph12010022.

  • Tadros, T. F. (2003). Surfactants, industrial applications. In Meyers, R. A. (Ed.), Encyclopedia of Physical Science and Technology (3rd ed., pp. 423-438). Elsevier Science Ltd.

  • Tallaksen, C. M., Sande, A., Bøhmer, T., Bell, H., & Karlsen, J. (1993). Kinetics of thiamin and thiamin phosphate esters in human blood, plasma and urine after 50 mg intravenously or orally. European Journal of Clinical Pharmacology, 44(1), 73–78. https://doi.org/10.1007/BF00315284.

    Article  CAS  PubMed  Google Scholar 

  • Tan, Y., Li, R., Liu, C., Mundo, J. M., Zhou, H., Liu, J., et al. (2020a). Chitosan reduces vitamin D bioaccessibility in food emulsions by binding to mixed micelles. Food & Function, 11(1), 187–199. https://doi.org/10.1039/C9FO02164G.

    Article  CAS  Google Scholar 

  • Tan, Y., Li, R., Zhou, H., Liu, J., Mundo, J. M., Zhang, R., et al. (2020b). Impact of calcium levels on lipid digestion and nutraceutical bioaccessibility in nanoemulsion delivery systems studied using standardized INFOGEST digestion protocol. Food & Function, 11(1), 174–186. https://doi.org/10.1039/C9FO01669D.

    Article  CAS  Google Scholar 

  • Tetradis-Meris, G., Rossetti, D., de Torres, C. P., Cao, R., Lian, G., & Janes, R. (2009). Novel parallel integration of microfluidic device network for emulsion formation. Industrial and Engineering Chemistry Research, 48(19), 8881–8889. https://doi.org/10.1021/ie900165b.

    Article  CAS  Google Scholar 

  • Thankachan, P., Walczyk, T., Muthayya, S., Kurpad, A. V., & Hurrell, R. F. (2008). Iron absorption in young Indian women: the interaction of iron status with the influence of tea and ascorbic acid. The American Journal of Clinical Nutrition, 87(4), 881–886. https://doi.org/10.1093/ajcn/87.4.881.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, P., & Fenech, M. (2009). Folate and Vitamins B2, B6, and B12. In Knasmüller, S., De Marini, D., Johnson, I. & Gerhâuser, C. (Eds.), Chemoprevention of cancer and DNA damage by dietary factors: Wiley-VCH Verlag GmbH & Co. KGaA.

  • Tu, F., & Lee, D. (2014). One-step encapsulation and triggered release based on Janus particle-stabilized multiple emulsions. Chemical Communications, 50(98), 15549–15552. https://doi.org/10.1039/C4CC07854C.

    Article  CAS  PubMed  Google Scholar 

  • Underwood, E. (1977). The elements in human and animal nutrition. USA: Academic Press Inc..

    Google Scholar 

  • Urban, K., Wagner, G., Schaffner, D., Röglin, D., & Ulrich, J. (2006). Rotor-Stator and Disc Systems for Emulsification Processes. Chemical Engineering and Technology, 29(1), 24–31. https://doi.org/10.1002/ceat.200500304.

    Article  CAS  Google Scholar 

  • USDA (2015). Appendix E-3.5: Reducing saturated fats in the USDA food patterns, scientific report of the 2015 Dietary Guidelines Advisory Committee. https://health.gov/sites/default/files/2019-09/Appendix-E-3.5.pdf. Accessed 24 July 2020.

  • Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A., & Weitz, D. A. (2005). Monodisperse double emulsions generated from a microcapillary device. Science, 308(5721), 537–541. https://doi.org/10.1126/science.1109164.

    Article  CAS  PubMed  Google Scholar 

  • Vacca, J. R. (2020). Molecular nanoscale communication and networking of bio-inspired information and communication technologies. In Nanoscale Networking and Communications Handbook: Taylor & Francis Group, LLC.

  • Van der Zwan, E. A., Schrön, C. G. P. H., & Boom, R. M. (2008). Premix membrane emulsification by using a packed layer of glass beads. AICHE Journal, 54(8), 2190–2197. https://doi.org/10.1002/aic.11508.

    Article  CAS  Google Scholar 

  • Vermeer, C., Van't Hoofd, C., Knapen, M. H. J., & Xanthoulea, S. (2017). Synthesis of 2-methyl-1,4-naphthoquinones with higher gamma-glutamyl carboxylase activity than MK-4 both in vitro and in vivo. Bioorganic & Medicinal Chemistry Letters, 27(2), 208–211. https://doi.org/10.1016/j.bmcl.2016.11.073.

    Article  CAS  Google Scholar 

  • Vladisavljević, G. T. (2019). Preparation of microemulsions and nanoemulsions by membrane emulsification. Colloid Surface A, 579, 123709. https://doi.org/10.1016/j.colsurfa.2019.123709.

    Article  CAS  Google Scholar 

  • Vladisavljevic, G. T., & Wiliams, R. A. (2006). Manufacture of large uniform droplets using rotating membrane emulsification. Journal of Colloid and Interface Science, 299(1), 396–402. https://doi.org/10.1016/j.jcis.2006.01.061.

    Article  CAS  PubMed  Google Scholar 

  • Vladisavljević, G. T., Al Nuumani, R., & Nabavi, S. (2017). Microfluidic production of multiple emulsions. Micromachines, 8(3), 75. https://doi.org/10.3390/mi8030075.

    Article  PubMed Central  Google Scholar 

  • Walstra, P. (1991). Principles of emulsion formation. In J. Laven & H. N. Stein (Eds.), The preparation of dispersions, IACIS Conference/ Event 439 of the EFChE. The Netherlands: Veldhove.

    Google Scholar 

  • Wang, B., Vongsvivut, J., Adhikari, B., & Barrow, C. J. (2015). Microencapsulation of tuna oil fortified with the multiple lipophilic ingredients vitamins A, D3, E, K2, curcumin and coenzyme Q10. Journal of Functional Foods, 19(Part B), 893–901. https://doi.org/10.1016/j.jff.2015.03.027.

    Article  CAS  Google Scholar 

  • Ward, R. J., & Crichton, R. R. (2016). Iron: properties and determination. In Caballero, B., Finglas, P. M. & Toldrà, F. (Eds.), Encyclopedia of Food and Health (pp. 468-475): Elsevier Lrd.

  • Wedner, S. H., & Ross, D. A. (2008). Vitamin A deficiency and its prevention. In H. K. Heggenhougen (Ed.), International Encyclopedia of Public Health (pp. 526-532): Elsevier Inc.

  • Weiss, J., & Muschiolik, G. (2007). Factors affecting the droplet size of water-in-oil emulsions (W/O) and the oil globule size in water-in-oil-in-water emulsions (W/O/W). Journal of Dispersion Science and Technology, 28(5), 703–716. https://doi.org/10.1080/01932690701341819.

    Article  CAS  Google Scholar 

  • Wen, L., & Papadopoulos, K. D. (2000a). Effects of surfactant on water transport in W1/O/W2 emulsions. Langmuir, 16(20), 7612–7617. https://doi.org/10.1021/la000071b.

    Article  CAS  Google Scholar 

  • Wen, L., & Papadopoulos, K. D. (2000b). Visualization of water transport in W1/O/W2 emulsions. Colloid Surface A, 174(1-2), 159–167. https://doi.org/10.1016/S0927-7757(00)00508-2.

    Article  CAS  Google Scholar 

  • Wen, L., & Papadopoulos, K. D. (2001). Effects of osmotic pressure on water transport in W1/O/W2 emulsions. Journal of Colloid and Interface Science, 235(2), 398–404. https://doi.org/10.1006/jcis.2000.7384.

    Article  CAS  PubMed  Google Scholar 

  • WHO (2004). Vitamin and mineral requirements in human nutrition (2nd ed.): World Health Organization and Food and Agriculture Organization of the United Nations.

  • WHO (2020). Prevalence of anaemia in women of reproductive age (%). https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-anaemia-in-women-of-reproductive-age-(-). Accessed 26 September 2020.

  • Winuprasith, T., Khomein, P., Mitbumrung, W., Suphantharika, M., Nitithamyong, A., & McClements, D. J. (2018). Encapsulation of vitamin D3 in pickering emulsions stabilized by nanofibrillated mangosteen cellulose: impact on in vitro digestion and bioaccessibility. Food Hydrocolloids, 83, 153–164. https://doi.org/10.1016/j.foodhyd.2018.04.047.

    Article  CAS  Google Scholar 

  • Xu, A. X., West, E. A. L., & Rogers, M. A. (2020). Encapsulation of nutraceuticals. In P. A. Spagnuolo (Ed.), Nutraceuticals and Human Health: The Food-to-supplement Paradigm. UK: The Royal Society of Chemistry.

    Google Scholar 

  • Yadavali, S., Jeong, H.-H., Lee, D., & Issadore, D. (2018). Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles. Nature Communications, 9(1), 1222. https://doi.org/10.1038/s41467-018-03515-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildrim, M., Sumnu, G., & Sahin, S. (2017). The effects of emulsifier type, phase ratio, and homogenization methods on stability of the double emulsion. Journal of Dispersion Science and Technology, 38(6), 807–814. https://doi.org/10.1080/01932691.2016.1201768.

    Article  CAS  Google Scholar 

  • Younes, M., Aggett, P., Aguilar, F., Crebelli, R., Dusemund, B., Filipic, M., et al. (2018). Scientific opinion on the evaluation of authorised ferric sodium EDTA as an ingredient in the context of Regulation (EC) 258/97 on novel foods and Regulation (EU) 609/2013 on food intended for infants and young children, food for special medical purposes and total diet replacement for weight control. EFSA Journal, 16(8), e05369. https://doi.org/10.2903/j.efsa.2018.5369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, B., Yang, T., Wang, Q., Zhang, G., Huo, J., Huang, J., & Wang, L. (2016). Fabrication of uniform alginate-agarose microcapsules loading FeSO4 using water-oil-water-oil multiple emulsions system combined with premix membrane emulsification technique. Colloid Surface A, 498, 128–138. https://doi.org/10.1016/j.colsurfa.2016.03.039.

    Article  CAS  Google Scholar 

  • Zhou, H., Tan, Y., Lv, S., Liu, J., Muriel Mundo, J. M., Bai, L., et al. (2020). Nanochitin-stabilized pickering emulsions: influence of nanochitin on lipid digestibility and vitamin bioaccessibility. Food Hydrocolloids, 106, 105878. https://doi.org/10.1016/j.foodhyd.2020.105878.

    Article  CAS  Google Scholar 

  • Zimmermann, M. B., Wegmueller, R., Zeder, C., Chaouki, N., Biebinger, R., Hurrell, R. F., & Windhab, E. (2004). Triple fortification of salt with microcapsules of iodine, iron, and vitamin A. The American Journal of Clinical Nutrition, 80(5), 1283–1290. https://doi.org/10.1093/ajcn/80.5.1283.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saffarionpour, S., Diosady, L.L. Multiple Emulsions for Enhanced Delivery of Vitamins and Iron Micronutrients and Their Application for Food Fortification. Food Bioprocess Technol 14, 587–625 (2021). https://doi.org/10.1007/s11947-021-02586-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02586-2

Keywords

Navigation