Skip to main content
Log in

Effect of the Mixture of Polymers on the Rheological and Technological Properties of Composite Films of Acoupa Weakfish (Cynoscion acoupa) and Cassava Starch (Manihot esculenta C.)

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Biopolymers, such as proteins and carbohydrates, can be used for the production of biofilms, as they are biodegradable, biocompatible, and capable of providing adequate technological characteristics for films. This study aimed to evaluate the influence of different concentrations of fish myofibrillar proteins and cassava starch on the rheological and technological properties of filmogenic solutions (FS) and films. FS were prepared with 1% protein (fish residue) (F1), 4% starch (F2), 0.5% protein + 2% starch (F3), 1% protein + 2% starch (F4), and 0.5% protein + 4% starch (F5) all with 30% glycerol. Rheological analyzes of apparent viscosity were performed on the filmogenic solutions and were evaluated the technological properties, thermogravimetric (TGA/DTG and DSC), x-ray diffraction, infrared spectroscopy (FTIR-ATR), microscopy (SEM), and spectroscopy (EDS) in elaborate films. The FS showed a non-Newtonian behavior (n ≠ 1), with dilating and pseudoplastic fluids for proteins and starch, respectively, both model Herschel-Bulkley. The color of the raw materials influenced the color of the films (p ≤ 0.05). Composite films (F3, F4, and F5) showed better barrier properties in the visible range (350–800 nm), with starch (F1) being the most transparent (p ≤ 0.05). F4 film showed the best technological properties: PVA, solubility and mechanics. The films with the highest percentage of protein, F1 and F4, presented higher (p ≤ 0.05) thermal resistance. In addition, starch favored the crystallinity of films (F3, F4, and F5), providing more orderly matrices. The FTIR and EDS analyzes of the films confirmed the successful interaction of proteins and starch. Therefore, the properties of the elaborated composite films indicate that the interaction between biopolymers is positive to produce packaging for different types of food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad, M., Hani, N. M., Nirmal, N. P., Fazial, F. F., Mohtar, N. F., & Romli, S. R. (2015). Optical and thermo-mechanical properties of composite films based on fish gelatin/rice flour fabricated by casting technique. Progress in Organic Coatings, 84, 115–127.

    Article  CAS  Google Scholar 

  • Al-Hassan, A. A., & Norziah, M. H. (2012). Starch-gelatin edible films: Water vapor permeability and mechanical properties as affected by plasticizers. Food Hydrocolloids, 26(1), 108–117.

    Article  CAS  Google Scholar 

  • Álvarez-Parrilla, E., & Lluch, A. P. M. A. (1997). Preparación y caracterización química y microestructural de surimi de merluza (Merluccius merluccius) y de jurel (Trachurus trachurus). Food Science and Technology Internacional., 3(1), 49–60.

    Article  Google Scholar 

  • Araújo, C. S., Rodrigues, A. M. C., Peixoto Joele, M. R. S., Araújo, E. A. F., & Lourenço, L. F. H. (2018). Optmizing process parameters to obtain a bioplastic using proteins from fish byproducts through the response surface metho. Food Packaging and Shelf Life, 16, 23–30.

    Article  Google Scholar 

  • Arfat, Y. A., Benjakul, S., Prodpran, T., & Osako, K. (2014). Development and characterisation of blend films based on fish protein isolate and fish skin gelatin. Food Hydrocolloids, 39, 58–67.

    Article  CAS  Google Scholar 

  • Arfat, Y. A., Benjakul, S., Prodpran, T., Sumpavapol, P., & Songtipya, P. (2016). Physico-mechanical characterization and antimicrobial properties of fish protein isolate/fish skin gelatin-zinc oxide (zno) nanocomposite films. Food and Bioprocess Technology, 9(1), 101–112.

    Article  CAS  Google Scholar 

  • Barreto, P. L. M., Pires, A. T. N., & Soldi, V. (2003). Thermal degradation of edible films based on milk proteins and gelatin in inert atmosphere. Polymer Degradation and Stability, 79, 147–152.

    Article  CAS  Google Scholar 

  • Batista, J. T. S., Araújo, C. S., Peixoto Joele, M. R. S., Silva, J. O. C., & Lourenço, L. F. H. (2019). Study of the effect of the chitosan use on the properties of biodegradable films of myofibrillar proteins of fish residues using response surface methodology. Food Packaging and Shelf Life, 20, 100306.

    Article  Google Scholar 

  • Batista, J. T. S., Matias, C. S. A., Freitas, M. M. D. S., Nascimento, G. D. S., Vieira, L. L., & Lourenço, L. D. F. H. (2020). Technological Properties of Biodegradable Films Produced with Myofibrillar Proteins Extracted from Gilded cat-fish (Brachyplatystoma rousseauxii) Carcasses and Parings. Journal of Aquatic Food Product Technology, 00(00), 1–15.

  • Blanco-pascual, N., Fernández-martín, F., & Montero, P. (2014). Jumbo squid (Dosidicus gigas) myofibrillar protein concentrate for edible packaging films and storage stability. LWT - Food Science and Technology, 55(2), 543–550.

    Article  CAS  Google Scholar 

  • Bof, M. J., Bordagaray, V. C., Locaso, D. E., & García, M. A. (2015). Chitosan molecular weight effect on starch-composite film properties. Food Hydrocolloids, 51, 281–294.

    Article  CAS  Google Scholar 

  • Daniel, L., Homez-jara, A., Fernando, J., & Alexander, H. (2018). International Journal of Biological Macromolecules Effects of temperature, starch concentration, and plasticizer concentration on the physical properties of ulluco (Ullucus tuberosus Caldas) -based edible fi lms. International Journal of Biological Macromolecules, 120, 1834–1845.

    Article  Google Scholar 

  • Debeaufort, F., & Voilley, A. (2009). Lipid-based edible films and coatings. Huber, K. C., & Embuscado, M. E. (Eds.). Edible Films and Coatings for Food Applications.

  • Echeverría, I., Eisenberg, P., & Mauri, A. N. (2014). Nanocomposites films based on soy proteins and montmorillonite processed by casting. Journal of Membrane Science, 449, 15–26.

    Article  Google Scholar 

  • Fan, M., Hu, T., Zhao, S., Xiong, S., Xie, J., & Huang, Q. (2017). Gel characteristics and microstructure of fish myofibrillar protein/cassava starch composites. Food Chemistry, 218, 221–230.

  • Gontard, N., Duchez, C., Cuq, J. L, & Guilbert, S. (1994). Edible composite films of wheat gluten and lipids: Water vapour permeability and other physical properties. International Journal of Food Science & Technology, 29(1), 39–50.

  • Hoque, M. S., Benjakul, S., & Prodpran, T. (2010). Effect of heat treatment of film-forming solution on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. Journal of Food Engineering, 96(1), 66–73.

    Article  CAS  Google Scholar 

  • Hoque, M. S., Benjakul, S., & Prodpran, T. (2011). Effects of partial hydrolysis and plasticizer content on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. Food Hydrocolloids, 25(1), 82–90.

  • Kaewprachu, P., Osako, K., Benjakul, S., & Rawdkuen, S. (2016). Effect of protein concentrations on the properties of fish myofibrillar protein based film compared with PVC film. Journal of Food Science and Technology, 53(4), 2083–2091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaewprachu, P., Osako, K., Tongdeesoontorn, W., & Rawdkuen, S. (2017). The effects of microbial transglutaminase on the properties of fish myofibrillar protein film. Food Packaging and Shelf Life, 12, 91–99.

    Article  Google Scholar 

  • Kaewprachu, P., Osako, K., Rungraeng, N., & Rawdkuen, S. (2018). Characterization of fish myofibrillar protein film incorporated with catechin-Kradon extract. International Journal of Biological Macromolecules, 107(Pt B), 1463–1473.

    Article  CAS  PubMed  Google Scholar 

  • Kanwate, B. W., Ballari, R. V., & Kudre, T. G. (2019). Influence of spray-drying, freeze-drying and vacuum-drying on physicochemical and functional properties of gelatin from Labeo rohita swim bladder. International Journal of Biological Macromolecules, 121, 135–141.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S., Kang, J., & Song, K. B. (2020). Development of a Sword Bean (Canavalia gladiata) Starch Film Containing Goji Berry Extract. Food and Bioprocess Technology, 13(1), 911–921.

    Article  CAS  Google Scholar 

  • Lagarrigue, S., & Alvarez, G. (2001). The rheology of starch dispersions at high temperatures and high shear rates: A review. Journal of Food Engineering, 50(4), 189–202.

  • Leite, T. S., Jesus, A. L. T., Schmiele, M., Tribst, A. A. L., & Cristianini, M. (2017). High pressure processing (HPP) of pea starch: Effect on the gelatinization properties. LWT - Food Science and Technology, 76, 361–369.

    Article  CAS  Google Scholar 

  • Limpan, N., Prodpran, T., Benjakul, S., & Prasarpran, S. (2012). Influences of degree of hydrolysis and molecular weight of poly (vinyl alcohol) (PVA) on properties of fish myofibrillar protein/PVA blend films. Food Hydrocolloids, 29(1), 226–233.

  • Lin, J. H., Liang, C. W., & Chang, Y. H. (2016). Effect of starch source on gel properties of kappa-carrageenan-starch dispersions. Food Hydrocolloids, 60, 509–515.

    Article  CAS  Google Scholar 

  • Liu, R., Zhao, S. M., Xiong, S. B., Qiu, C. G., & Xie, B. J. (2008). Rheological properties of fish actomyosin and pork actomyosin solutions. Journal of Food Engineering, 85(2), 173–179.

    Article  CAS  Google Scholar 

  • Liu, H., Adhikari, R., Guo, Q., & Adhikari, B. (2013). Preparation and characterization of glycerol plasticized (high-amylose) starch-chitosan films. Journal of Food Engineering, 116(2), 588–597.

    Article  CAS  Google Scholar 

  • Montgomery, D. C., & Runger, G. C. (2018). Applied Statistics and Probability for Engineers (7th ed.p. 564). New York: Ed. Wiley.

    Google Scholar 

  • Moraes, I. C. F., Carvalho, R. A., Bittante, A. B. Q. B., Solorza-Feria, J. J. A., & Sobral, P. J. A. (2009). Film forming solutions based on gelatin and poly(vinyl alcohol) blends: Thermal and rheological characterizations. Journal of Food Engineering, 95(4), 588–596.

  • Moreno, O., Atarés, L., Chiralt, A., Cruz-Romero, M. C., & Kerry, J. (2018). Starch-gelatin antimicrobial packaging materials to extend the shelf life of chicken breast fillets. LWT - Food Science and Technology, 97, 483–490.

    Article  CAS  Google Scholar 

  • Muñoz, L. A., Aguilera, J. M., Rodriguez-Turienzo, L., Cobos, A., & Diaz, O. (2012). Characterization and microstructure of films made from mucilage of Salvia hispanica and whey protein concentrate. Journal of Food Engineering, 111(3), 511–518.

    Article  Google Scholar 

  • Muriel-Galet, V., López-Carballo, G., Gavara, R., & Hernández-Muñoz, P. (2015). Antimicrobial Effectiveness of Lauroyl Arginate Incorporated into Ethylene Vinyl Alcohol Copolymers to Extend the Shelf-Life of Chicken Stock and Surimi Sticks. Food and Bioprocess Technology, 8(1), 208–217.

    Article  CAS  Google Scholar 

  • Nascimento, T. A., Calado, V., & Carvalho, C. W. P. (2012). Development and characterization of flexible film based on starch and passion fruit mesocarp flour with nanoparticles. Food Research International, 49(1), 588–595.

    Article  CAS  Google Scholar 

  • Neves, E. M. P. X., Pereira, G. V. S., Pereira, G. V. S., Vieira, L. L., & Lourenço, L. F. H. (2019). Effect of polymer mixture on bioplastic development from fish waste. Boletim do Instituto de Pesca, 45(4), e518.

  • Nie, X., Gong, Y., Wang, N., & Meng, X. (2015). Preparation and characterization of edible myofibrillar protein-based film incorporated with grape seed procyanidins and green tea polyphenol. LWT - Food Science and Technology, 64(2), 1042–1046.

    Article  CAS  Google Scholar 

  • Nogueira, D., & Martins, V. G. (2019). Use of Different Proteins to Produce Biodegradable Films and Blends. Journal of Polymers and the Environment, 27(9), 2027–2039.

    Article  CAS  Google Scholar 

  • Oliveira, L. F., Ascheri, D. P. R., & Ascheri, J. L. R. (2011a). Desenvolvimento, caracterização de filmes comestíveis de fécula de mangarito (Xanthosoma mafaffa Schott) e sua aplicação em frutos de jabuticaba. Boletim Centro de Pesquisa de Processamento de Alimentos, 29(2), 265–280.

    Google Scholar 

  • Oliveira, N. M., Dourado, F. Q., Peres, A. M., Silva, M. V., Maia, J. M., & Teixeira, J. A. (2011b). Effect of guar gum on the physicochemical, thermal, rheological and textural properties of green Edam cheese. Food and Bioprocess Technology, 4(8), 1414–1421.

    Article  CAS  Google Scholar 

  • Pereira, G. V. S., Pereira, G. V. S., de Araujo, E. F., Xavier, E. M. P., Joele, M. R. S. P., & de Lourenço, L. F. H. (2019a). Optimized process to produce biodegradable films with myofibrillar proteins from fish byproducts. Food Packaging and Shelf Life, 21, 100364.

    Article  Google Scholar 

  • Pereira, G. V. S., Pereira, G. V. S., Neves, E. M. P. X., Joele, M. R. S. P., Lima, C. L. S., & de Lourenço, L. F. H. (2019b). Effect of adding fatty acids and surfactant on the functional properties of biodegradable films prepared with myofibrillar proteins from acoupa weakfish (Cynoscion acoupa). Food Science and Technology, 39(1), 287–294.

    Article  Google Scholar 

  • Pereira, G. V. S., Pereira, G. V. S., Neves, E. M. P. X., Rego, J. A. R., Brasil, D. S. B., Lourenço, L. F. H., & Joele, M. R. S. P. (2020). Glycerol and fatty acid influences on the rheological and technological properties of composite films from residues of Cynoscion acoupa. Food Bioscience, 38, 100773.

  • Pires, C., Ramos, C., Teixeira, G., Batista, I., Mendes, R., Nunes, L., & Marques, A. (2011). Characterization of biodegradable films prepared with hake proteins and thyme oil. Journal of Food Engineering, 105(3), 422–428.

    Article  CAS  Google Scholar 

  • Podshivalov, A., Zakharova, M., Glazacheva, E., & Uspenskaya, M. (2017). Gelatin/potato starch edible biocomposite films: Correlation between morphology and physical properties. Carbohydrate Polymers, 157, 1162–1172.

    Article  CAS  PubMed  Google Scholar 

  • Rego, J. A. R., Costa, M. L. C., Brasil, D. S. B., Cruz, J. N., Costa, C. M. L., Santana, E. B., Furtado, S. V., & Lope, A. S. (2020). Characterization and evaluation of filmogenic, polymeric, and biofilm suspension properties of cassava starch base (Manihot esculenta Crantz) Plasticized with Polyols. Brazilian Journal of Development, 6(7), 50417–50442.

    Article  Google Scholar 

  • Romani, V. P., Prentice-Hernández, C., & Martins, V. G. (2017). Active and sustainable materials from rice starch, fish protein and oregano essential oil for food packaging. Industrial Crops and Products, 97, 268–274.

    Article  CAS  Google Scholar 

  • Romani, V. P., Hernández, C. P., & Martins, V. G. (2018). Pink pepper phenolic compounds incorporation in starch/protein blends and its potential to inhibit apple browning. Food Packaging and Shelf Life, 15, 151–158.

    Article  Google Scholar 

  • Romani, V. P., Olsen, B., Pinto Collares, M., Meireles Oliveira, J. R., Prentice-Hernández, C., & Guimarães Martins, V. (2019). Improvement of fish protein films properties for food packaging through glow discharge plasma application. Food Hydrocolloids, 87, 970–976.

    Article  CAS  Google Scholar 

  • Shriner, R. L., & Fuson, R. C. (1983). Identificação Sistemática de Compostos Orgânicos. Rio de Janeiro, RJ: Publisher Guanabara Dois S.A.

  • Silva, J. L., Oliveira, A. C., Vieira, T. C. R. G., Oliveira, G. A. P., Suarez, M. C., & Foguel, D. (2014). High-Pressure Chemical Biology and Biotechnology. Chemical Reviews, 114(14), 7239–7267.

    Article  CAS  PubMed  Google Scholar 

  • STATSOFT. (2004). Statistica for Windows, versão 7.0.

  • Stevens, J. R., Newton, R. W., Tlusty, M., & Little, D. C. (2018). The rise of aquaculture by-products: Increasing food production, value, and sustainability through strategic utilisation. Marine Policy, 90, 115–124.

    Article  Google Scholar 

  • Sukhija, S., Singh, S., & Riar, C. S. (2016). Analyzing the effect of whey protein concentrate and psyllium husk on various characteristics of biodegradable film from lotus (Nelumbo nucifera) rhizome starch. Food Hydrocolloids, 60, 128–137.

    Article  CAS  Google Scholar 

  • Sun, Q., & Xiong, C. S. L. (2014). Functional and pasting properties of pea starch and peanut protein isolate blends. Carbohydrate Polymers, 101(1), 1134–1139.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Q., Sun, C., & Xiong, L. (2013). Mechanical, barrier and morphological properties of pea starch and peanut protein isolate blend films. Carbohydrate Polymers, 98(1), 630–637.

    Article  CAS  PubMed  Google Scholar 

  • Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2011). Roles of lipid oxidation and pH on properties and yellow discolouration during storage of film from red tilapia (Oreochromis niloticus) muscle protein. Food Hydrocolloids, 25(3), 426–433.

    Article  CAS  Google Scholar 

  • Valencia-sullca, C., Atarés, L., Vargas, M., & Chiralt, A. (2018). Physical and antimicrobial properties of compression-molded cassava starch-chitosan films for meat preservation. Food and Bioprocess Technology, 11, 1339–1349.

    Article  CAS  Google Scholar 

  • Vieira, L. L., Araújo, C. S., Neves, E. M. P. X., Batista, J. T. S., Joele, P. M. R. S., & Lourenço, L. F. H. (2018). Emulsified films produced with proteins extracted from whitemouth croaker byproducts: Development and characterization. Boletim Do Instituto de Pesca, 44(3), e360.

  • Wu, C., Tian, J., Li, S., Wu, T., Hu, Y., Chen, S., & Ye, X. (2016). Structural properties of films and rheology of film-forming solutions of chitosan gallate for food packaging. Carbohydrate Polymers, 146, 10–19.

    Article  CAS  PubMed  Google Scholar 

  • Zavareze, E. R., Halal, S. L. M., Telles, A. C., & Prentice-Hernández, C. (2012). Filmes biodegradáveis à base de proteínas miofibrilares de pescado. Brazilian Journal of Food Technology, 15, 53–57.

  • Zavareze, E. R., Halal, S. L. M., Silva, R. M., Dias, A. R. G., & Prentice-Hernández, C. (2014). Mechanical, barrier and morphological properties of biodegradable films based on muscle and waste proteins from the whitemouth croaker (Micropogonias Furnieri). Journal of Food Processing and Preservation, 38(4), 1973–1981.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

All authors acknowledge the financial support of from CNPq (National Council for Scientific and Technological Development/Approved Project/Number 469101/2014-8), CAPES (Coordination of Improvement of Higher Level Personnel) by the researcher grant. Moreover, the Graduate Program in Food Science and Technology (PPGCTA/UFPA), PROPESP/Federal University of Para, and the FINEP and the BIONAMA and LABNANO-AMAZON/UFPA networks by the support for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gleice Vasconcelos da Silva Pereira.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Pereira, G.V., da Silva Pereira, G.V., Xavier Neves, E.M.P. et al. Effect of the Mixture of Polymers on the Rheological and Technological Properties of Composite Films of Acoupa Weakfish (Cynoscion acoupa) and Cassava Starch (Manihot esculenta C.). Food Bioprocess Technol 14, 1199–1215 (2021). https://doi.org/10.1007/s11947-021-02622-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02622-1

Keywords

Navigation